
Turning Data Sideways:
Crosstabs and Pivot Tables

Tamar E. Granor
Tomorrows Solutions, LLC

Web: www.tomorrowssolutionsll.com
Voice: 215-635-1958

Email: tamar@tomorrowssolutionsllc.com

In many applications, you need to take nice, normalized data and turn it "sideways," using the
values in one or more columns to specify columns in the result. Most often, the process also
involves aggregating data for each of those values. In Visual FoxPro, the result is called a
cross-tab; SQL Server calls it a pivot. Once you've created a cross-tab or pivot, reporting can
be difficult because the result may have many, many columns.

In this session, we'll see how to generate cross-tabs and pivots, as well as how to report on
them, including exporting to Excel and creating graphs of the results.

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 2 of 70

Introduction
Normalizing data is one of the keys to working with relational databases. Store every data
item once and only once and use relationships among the tables to connect disparate pieces
of data. While normalization is great for storing and manipulating data, it’s not unusual to
need to denormalize data for reporting purposes. We do this, for example, by adding a
customer’s name and address to order data in order to produce a sales order we can send
to the customer for confirmation.

One common need is to take data and turn it into column headers in order to see how two
data items interact. For example, you might want to see the sales for each salesperson by
year, or the number of students in each department receiving each grade. This kind of
manipulation of data is called a crosstab (VFP’s preferred term) or pivot (SQL Server’s
preferred term), and most database systems provide a way to create them.

Once you’ve created a crosstab or pivot, reporting on it can be challenging because you may
not know ahead of time how many columns you have or the names of those columns. But it
is possible to put such data into VFP reports, as well as to export it to Excel or to graph it
with either VFP or Excel.

This paper first looks at how to create crosstabs and pivots in VFP and SQL Server, and
then shows several ways to display that data to users. Except where noted, all VFP
examples in this paper work with the Northwind database, while SQL Server examples use
the AdventureWorks 2014 database.

Creating crosstabs in VFP
We’ll look at several tools for creating crosstabs from Visual FoxPro data. To start exploring
crosstabs, though, we’ll start with something simpler. The sample Northwind company has
employees only in the US and the UK. Suppose you want to know how many there are in
each country. A simple query, shown in Listing 1, gives you the answer; there are 4 UK
employees and 5 US employees.

Listing 1. It’s easy to get one record for each value of interest. Here, each record indicates how many
employees are in a given country.

SELECT country, COUNT(*) ;
 FROM Employees ;
 GROUP BY Country ;
 INTO CURSOR csrEmpsByCountry

But what if you want to know how many there are in each job in each country? Again, that’s
not hard. Listing 2 gives us one record for each combination of job title and country;
results are shown in Figure 1.

Listing 2. Group on more fields to break the data down into smaller groups.

SELECT Title, Country, COUNT(*) ;
 FROM Employees ;

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 3 of 70

 GROUP BY Title, Country ;
 INTO CURSOR csrEmpsByCountry

Figure 1. Grouping on Title and Country lets us see how many employees have each job in each country.

But what if what you really want is one record for each job title with a column for each
country showing how many employees in that country have that job? That’s a crosstab. For
a simple case like this, you can get what you need with IIF(), as in Listing 3 (included in the
downloads for this session as JobsByCountry.PRG). Figure 2 shows the results, with one
row for each job title and one column for each country.

Listing 3. Here, combining SUM() with IIF() counts the number of employees in each country with each job.

SELECT Title, ;
 SUM(IIF(Country="US",1,0)) AS nUS,
 SUM(IIF(Country="UK",1,0)) AS nUK ;
 FROM Employees ;
 GROUP BY Title ;
 INTO CURSOR csrJobsByCountry

Figure 2. A crosstab uses data to determine what columns are in the result.

This approach works fine when you know the exact number of columns you want and it’s
not too many. But more often, you don’t know how many columns will be in the result, and
you may not even know the set of values they’re drawn from. That’s where a crosstab tool
comes in handy.

VFPXTab

There’s been a crosstab tool in the box since FoxPro 2.0, where it was called GenXTab. The
version that comes with VFP is VFPXTab.PRG and it’s found in the VFP home folder. The
system variable _GENXTAB points to it; the Query Designer uses _GENXTAB when you
create a crosstab query.

Comments at the top of VFPXTab.PRG explain its parameters and show how to call it,
including the structure of the data needed for it to work. Basically, it expects to find a table
or cursor with three columns. By default, the data in the first column becomes the rows in

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 4 of 70

the result, the data in the second column becomes the columns in the result, and the data in
the third column is aggregated (summed, by default) to form the data in the result.

For example, suppose we want the total sales for each salesperson for each year with a row
for each salesperson and a column for each year. We start with a query to collect the
relevant data, shown in Listing 4; Figure 3 shows partial results.

Listing 4. This query gives us one record for each employee for each year, showing total sales.

SELECT EmployeeID, ;
 YEAR(OrderDate) AS OrderYear, ;
 SUM(Quantity*UnitPrice) AS OrderTotal ;
 FROM Orders ;
 JOIN OrderDetails ;
 ON Orders.OrderID = OrderDetails.OrderID ;
 GROUP BY 1, 2 ;
 INTO CURSOR csrYearlyTotals

Figure 3. The query in Listing 4 results in one record per salesperson per year.

To get the results we want, we instantiate the GenXTab class in VFPXTab.PRG and call its
MakeXTab method, as in Listing 5. The class takes 10 parameters that configure its
behavior. (Because I don’t recommend actually using this crosstab tool, I’m not going to go
into detail about the parameters. They’re documented in the code.) The two parameters
passed in the example indicate that the result should be stored in a cursor (rather than a
table) named csrXTab. Figure 4 shows the result.

Listing 5. The GenXTab class in VFPXTab accepts up to 10 parameters.

oXTab = NEWOBJECT("genxtab", _GENXTAB,'', "csrXTab", .t.)
oXTab.MakeXtab()

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 5 of 70

Figure 4. This crosstab has one row per employee and one column per year.

A complete program collecting the data and running the crosstab, as well as timing the
crosstab process, is included in the downloads for this session as
SalesPersonAnnualSales.PRG. The downloads also include SalesPersonMonthlySales.PRG,
which generates a crosstab with one row per salesperson and a column for each month of
1997.

As the size of the data set supplied to VFPXTab grows, generating a crosstab gets much
slower. In Listing 6, the result has one row for each date in the data set and a column for
each salesperson; Figure 5 shows partial results. This example is included in the
downloads for this session as SalesPersonDailySales.PRG.

Listing 6. Here, the final result has one row per day with one column per salesperson.

SELECT OrderDate, ;
 EmployeeID, ;
 SUM(Quantity*UnitPrice) AS OrderTotal ;
 FROM Orders ;
 JOIN OrderDetails ;
 ON Orders.OrderID = OrderDetails.OrderID ;
 GROUP BY 1, 2 ;
 INTO CURSOR csrDailyTotals

LOCAL oXTab

oXTab = NEWOBJECT("genxtab", _GENXTAB,'', "csrXTab", .t.)
oXTab.MakeXtab()

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 6 of 70

Figure 5. Partial results for a crosstab of daily sales by salesperson. There are more rows in the full result.

In my tests, the crosstab with one row per salesperson and one column per year varies
from about 1/10th of a second to about 1/100th of a second, but the daily sales example
takes nearly half a second. (In each case, I’m timing only crosstab generation, not the query
that assembles the data.)

FastXTab

Fortunately, there’s a faster way to get crosstabs. FastXTab was created by Alexander
Golovlev specifically to address VFPXTab’s speed issues. It’s available for download from
the Universal Thread at
https://www.levelextreme.com/ShowHeaderDownloadOneItem.aspx?ID=9944. FastXTab
replaces VFPXTab’s long list of parameters (which were a throwback to the program’s non-
OOP origins) with properties. Table 1 shows the key properties.

Table 1. FastXTab uses properties for configuration.

Property Default
value

Purpose

cOutFile “xtabquery” Alias of the output table or cursor
lCursorOnly .F. Indicates whether the results are placed in a table (.F.) or cursor (.T.)
lCloseTable .T. Indicates whether the source table should be closed after creating the

crosstab
nRowField 1 Indicates which column of the source table provides the rows
nColField 2 Indicates which column of the source table provides the columns
nDataField 3 Indicates which column of the source table provides the data to be

aggregated
lTotalRows .F. Indicates whether the result should include an extra row totaling the data in

the other rows
lBrowseAfter .F. Indicates whether the result should be opened in a Browse window

The use of properties makes code that calls FastXTab easier to read than code that calls
VFPXTab. Listing 7 shows the FastXTab equivalent of Listing 5; it’s based on the same
query (shown in Listing 4) and, of course, produces the same results. The complete code,
including timing test is included as SalesPersonAnnualSalesFast.prg in the downloads for
this session.

https://www.levelextreme.com/ShowHeaderDownloadOneItem.aspx?ID=9944

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 7 of 70

Listing 7. With FastXTab, the options you choose are easy to understand because you specify them with
properties.

oXTab = NEWOBJECT("fastxtab", "fastxtab.prg")
WITH oXTab AS FastXTab OF "fastxtab.prg"
 .cOutFile = "csrXtab"
 .lCursorOnly = .T.
 .lCloseTable = .T.
 .RunXtab()
ENDWITH

For this example, FastXTab isn’t faster than VFPXTab. But for the daily sales example, you
can see the major improvement FastXTab offers. Using the same original query as in
Listing 6 and the call to FastXTab shown in Listing 7, on my computer, the crosstab is
computed in about 2/100th of a second, that is, more than 2000% faster than with
VFPXTab. The code, including timing test, is included in the downloads for this session as
SalesPersonDailySalesFast.prg.

FastTab 1.6

The additional speed and readability are enough to make me recommend using FastXTab
rather than VFPXTab. But, as the infomercials say, “wait … there’s more.”

Community member Vilhelm-Ion Praisach has extended FastXTab considerably, both for
usability and to provide additional capabilities. It’s included in the downloads for this
session as FastXTab16.RAR. Praisach’s documentation (as well as the latest version) can be
found at http://praisachion.blogspot.com/2015/02/fastxtab-version-16.html. The
documentation includes lots of examples; I’ve broken those examples out into individual
PRGs, which are included as FastXTab16Demos.ZIP in the downloads for this session.

Among the things supported in Praisach’s version are specifying the relevant fields by
name rather than column number; specifying multiple data columns; specifying the
function to apply to a given data column, including with a custom expression; and filtering
the data source.

All the properties supported by the original FastXTab remain, but there are quite a few new
properties to provide new capabilities. Table 2 shows some of them.

Table 2. FastXTab 1.6 includes many new properties to support new capabilities.

Property Default
value

Purpose

cRowField “” Expression from the source table that provides the rows
cColField “” Expression from the source table that provides the columns
cDataField “” Name of the column in the source table that provides the data to be

aggregated
cPageField “” Expression from the source table that provides “pages”
nFunctionType 1 Indicates how to aggregate the data; see Table 3.
cFunctionExp “” Expression to use for custom aggregation
cCondition “” Filter to apply to source data before aggregating

http://praisachion.blogspot.com/2015/02/fastxtab-version-16.html

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 8 of 70

Property Default
value

Purpose

cHaving “” Filter to apply to source data after aggregating
nMultiDataField 1 Indicates how many data fields are specified
anDataField Array of data fields specified by column position
acDataField Array of data fields specified by name
anFunctionType Array of aggregation function choices
acFunctionExp Array of custom aggregation expressions

Calling FastXTab 1.6 is the same as calling the original FastXTab (which I’ll refer to as
FastXTab 1.0), except that you need to point to the FastXTab 1.6 version of FastXTab.PRG.
The downloads for this session include SalesPersonAnnualSalesFast16.PRG, which is
identical to SalesPersonAnnualSalesFast.PRG, except for the path to the class library. In my
tests, it runs just as fast as the FastXTab 1.0 version.

But FastXTab 1.6 lets you do much more. Suppose you want to know how many sales each
salesperson had in each year. Specifying 2 for the nFunctionType property indicates Count;
Table 3 shows the options for this property.

Table 3. FastXTab 1.6 offers six ways of aggregating the data.

nFunctionType Meaning
1 Sum
2 Count
3 Average
4 Min
5 Max
6 Custom expression specified in cFunctionExp (or acFunctionExp for the relevant column)

The code in Listing 8 (included as SalesPersonAnnualSalesCountFast16.prg in the
downloads for this session) shows another cool feature of FastXTab 1.6, the ability to use
an expression to specify the rows or columns rather than just a field name. To get the
correct results here, we need to see every order, but we want them counted by year. So the
query that gathers the data keeps the original OrderDate column, but the .cColField
property specifies “YEAR(OrderDate),” so that the result has one column per year. (In fact,
the data collection query is unnecessary here. FastXTab could be run directly against the
Orders table.) Figure 6 shows the results.

Listing 8. FastXTab 1.6 lets you specify the aggregation function to apply, as well as specify expressions for
rows and columns.

SELECT EmployeeID, OrderDate, OrderID ;
 FROM Orders ;
 INTO CURSOR csrOrders

LOCAL oXTab AS FastXTab OF "fastxtab16\fastxtab.prg"

oXTab = NEWOBJECT("fastxtab", "fastxtab16\fastxtab.prg")
WITH oXTab AS FastXTab OF "fastxtab.prg"
 .nFunctionType = 2 && Count

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 9 of 70

 .cRowField = "EmployeeID"
 .cColField = "YEAR(OrderDate)"
 .cDataField = "OrderID"
 .cOutFile = "csrXtab"
 .lCursorOnly = .T.
 .lCloseTable = .T.
 .RunXtab()
ENDWITH

Figure 6. Here, the nFunctionType property was set to 2 to count the number of sales for each employee each
year.

What if you want to know not just total sales or the number of sales for each salesperson
for each year, but the total sales, the average sale and the number of sales? With FastXTab
1.6, you can specify multiple data columns and apply a different aggregation function to
each. To specify multiple data columns, set nMultiDataField to the number of data columns,
and then populate either anDataField or acDataField with the list of data columns. If you
want different aggregation for different columns, fill anFunctionType as well. In Listing 9
(included in the downloads for this session as SalesPersonAnnualSumAvgCnt.prg),
nMultiDataField is set to 3. The first two columns use the same field from the source,
OrderTotal, but each applies a different function. Figure 7 shows the results. There are
three columns for each year, one showing the total, one the average, and one the count.

Listing 9. FastXTab 1.6 lets you specify multiple data columns.

SELECT EmployeeID, ;
 Orders.OrderID, ;
 OrderDate, ;
 SUM(Quantity*UnitPrice) AS OrderTotal ;
 FROM Orders ;
 JOIN OrderDetails ;
 ON Orders.OrderID = OrderDetails.OrderID ;
 GROUP BY 1, 2, 3 ;
 INTO CURSOR csrOrderTotals

LOCAL oXTab AS FastXTab OF "fastxtab16\fastxtab.prg"

oXTab = NEWOBJECT("fastxtab", "fastxtab16\fastxtab.prg")
WITH oXTab AS FastXTab OF "fastxtab16\fastxtab.prg"
 .cRowField = 'EmployeeID'
 .cColField = 'YEAR(OrderDate)'

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 10 of 70

 .nMultiDataField = 3
 .acDataField[1] = 'OrderTotal'
 .anFunctionType[1] = 1
 .acDataField[2] = 'OrderTotal'
 .anFunctionType[2] = 3
 .anDataField[3] = 'OrderID'
 .anFunctionType[3] = 2
 .cOutFile = "csrXtab"
 .lCursorOnly = .T.
 .lCloseTable = .F.
 .RunXtab()
ENDWITH

Figure 7.Using the nMultiDataField property, you can get multiple data columns for each value of the
specified column field. Here, there are three columns for each year.

The previous examples showed that you can use an expression to specify the column field.
In fact, you can use an expression for the row field, too and that expression can be fairly
complex (in either case). Listing 10 inverts the problem we’ve been looking at, putting
employees in columns and time period in rows. In this case, each row specifies a quarter,
using an expression that gives a result like 1998_Q1 (for the first quarter of 1998). Figure 8
shows partial results. This query is included in the downloads for this session as
SalesPersonColsQuarterly.PRG.

Listing 10. The expressions used to specify row and columns can be complex.

SELECT EmployeeID, ;
 Orders.OrderID, ;
 OrderDate, ;
 SUM(Quantity*UnitPrice) AS OrderTotal ;
 FROM Orders ;
 JOIN OrderDetails ;
 ON Orders.OrderID = OrderDetails.OrderID ;
 GROUP BY 1, 2, 3 ;
 INTO CURSOR csrOrderTotals

LOCAL oXTab AS FastXTab OF "fastxtab16\fastxtab.prg"

oXTab = NEWOBJECT("fastxtab", "fastxtab16\fastxtab.prg")
WITH oXTab AS FastXTab OF "fastxtab16\fastxtab.prg"
 .cRowField = 'PADL(YEAR(OrderDate),4) + "_Q" + PADL(QUARTER(OrderDate),1)'
 .cColField = 'EmployeeID'
 .nMultiDataField = 3
 .acDataField[1] = 'OrderTotal'

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 11 of 70

 .anFunctionType[1] = 1
 .acDataField[2] = 'OrderTotal'
 .anFunctionType[2] = 3
 .anDataField[3] = 'OrderID'
 .anFunctionType[3] = 2
 .cOutFile = "csrXtab"
 .lCursorOnly = .T.
 .lCloseTable = .F.
 .RunXtab()
ENDWITH

Figure 8. Each row here represents a quarter and each set of three columns represents an employee.

Both versions of FastXTab support “pages,” the ability to group rows. (Imagine each “page”
as being a tab in a workbook.) With FastXTab 1.0, you specify the column that determines
“pages” with the nPageField property. FastXTab 1.6’s cPageField property lets you specify a
field name or an expression if you prefer, just as you do for rows and columns. Listing 11
(included in the downloads for this session as ProductsSold.PRG) shows how many units of
each category were sold and shipped to each country each year; Figure 9 shows partial
results. The most obvious use for data in this form is making grouping in a report simpler.

Listing 11. Use cPageField to specify an expression to “page” by in the crosstab.

SELECT ProductName, CategoryName, ;
 OrderDate, ShipCountry, ;
 SUM(Quantity) AS NumSold ;
 FROM Orders ;
 JOIN OrderDetails OD ;
 ON Orders.OrderID = OD.OrderID ;
 JOIN Products ;
 ON OD.ProductID = Products.ProductID ;
 JOIN Categories ;
 ON Products.CategoryID = Categories.CategoryID ;
 GROUP BY 1, 2, 3, 4 ;
 INTO CURSOR csrProductsSold

LOCAL oXTab AS FastXTab OF "fastxtab16\fastxtab.prg"

oXTab = NEWOBJECT("fastxtab", "fastxtab16\fastxtab.prg")
WITH oXTab AS FastXTab OF "fastxtab16\fastxtab.prg"
 .cPageField = 'ShipCountry'
 .cRowField = 'CategoryName'
 .cColField = 'YEAR(OrderDate)'
 .cDataField = 'NumSold'

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 12 of 70

 .cOutFile = "csrXtab"
 .lCursorOnly = .T.
 .lCloseTable = .F.
 .RunXtab()
ENDWITH

Figure 9. Here, each row represents one category for one country and each data column represents a year.
The data is the number of units of that category shipped to that country in the specified year.

When you set nFunctionType to 6 (or set anFunctionType for a particular column to 6), you
can specify a custom aggregation calculation. In Listing 12, we calculate the ratio of
shipping cost (Freight) to the order total for each month for each customer. Figure 10
shows partial results; the code is included in the downloads for this session as
FreightRatio.PRG.

Listing 12. You can set nFunctionType to 6 and cFunctionExp to a custom aggregation calculation. Here, it’s
the ratio of shipping cost to order total.

SELECT CustomerID, ;
 Orders.OrderID, ;
 OrderDate, ;
 SUM(Quantity*UnitPrice) AS OrderTotal,;
 Freight ;
 FROM Orders ;
 JOIN OrderDetails OD ;
 ON Orders.OrderID = OD.OrderID ;
 GROUP BY 1, 2, 3, 5 ;
 INTO CURSOR csrOrderTotals

LOCAL nStart, nEnd
LOCAL oXTab AS FastXTab OF "fastxtab16\fastxtab.prg"

oXTab = NEWOBJECT("fastxtab", "fastxtab16\fastxtab.prg")

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 13 of 70

WITH oXTab AS FastXTab OF "fastxtab16\fastxtab.prg"
 .cRowField = 'CustomerID'
 .cColField = 'PADL(YEAR(OrderDate),4)' + ' + "_" + PADL(MONTH(OrderDate),2,"0")'
 .nFunctionType = 6
 .cFunctionExp = 'SUM(Freight)/SUM(OrderTotal)'
 .cOutFile = "csrXtab"
 .lCursorOnly = .T.
 .lCloseTable = .T.
 .RunXtab()
ENDWITH

Figure 10. The data here is the ratio of freight cost to order total for a customer for a month.

FastXTab 1.6 lets you filter the data both before and after it’s aggregated. Use cCondition to
filter before aggregating, and cHaving to filter afterward.

In Listing 13, we retrieve data on all orders, but use only those from one year in the
crosstab, which shows totals for each salesperson for each month. You might use this
approach in a loop to generate a crosstab for each year. Figure 11 shows the results. The
code is included in the downloads for this session as SalesPersonMonthlyFilter.PRG.

Listing 13. The cCondition property filters data out of the cursor or table supplied to FastXTab 1.6. Here, we
keep only one year’s data.

SELECT EmployeeID, ;
 OrderDate, ;
 SUM(Quantity*UnitPrice) AS OrderTotal ;
 FROM Orders ;
 JOIN OrderDetails ;
 ON Orders.OrderID = OrderDetails.OrderID ;
 GROUP BY 1, 2 ;
 INTO CURSOR csrMonthlyTotals

LOCAL oXTab AS FastXTab OF "fastxtab16\fastxtab.prg"

oXTab = NEWOBJECT("fastxtab", "fastxtab16\fastxtab.prg")

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 14 of 70

WITH oXTab AS FastXTab OF "fastxtab16\fastxtab.prg"
 .cRowField = 'EmployeeID'
 .cColField = 'MONTH(OrderDate)'
 .cDataField = 'OrderTotal'
 .cCondition = 'YEAR(OrderDate) = 1998'
 .cOutFile = "csrXtab"
 .lCursorOnly = .T.
 .lCloseTable = .T.
 .RunXtab()
ENDWITH

Figure 11. This crosstab shows sales for each employee by month for the year specified in the cCondition
property.

To demonstrate cHaving, we’ll extend the freight ratio example. Perhaps you’re interested
in seeing only cases where customers seem to be spending too much on freight charges.
Add the line in Listing 14 inside the WITH clause in Listing 12 to see only cases where a
customer’s total monthly freight charges were more than 5% of the total orders. This
version of the example is included as FreightRatioFiltered.PRG in the downloads for this
session.

Listing 14. The cHaving property filters after aggregation. Here, it keeps only data where the ratio of freight
to order total (for the month) is more than 5%.

 .cHaving = 'SUM(Freight)/SUM(OrderTotal) >= 0.05'

Which one to use?

It should be obvious that I recommend FastXTab 1.6 over VFPXTab or FastXTab 1.0.
FastXTab 1.6 has some additional capabilities not discussed in this paper. If you use
crosstabs (or if you now see how you can use them), I strongly recommend spending some
time not only with the examples above, but with the ones that Vilhelm-Ion Praisach
provides.

Generating crosstabs (pivots) in SQL
In SQL Server, the term used for crosstabs is pivots and the ability to create them is built in.
No added tools are needed.

As with VFP, let’s start with a simple example to demonstrate the need for pivots. Suppose
you want to know how many employees AdventureWorks has in each country for each job

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 15 of 70

title. The query in Listing 15 answers the question, but the form of the result (partially
shown in Figure 12) makes it hard to grasp. The query is included as
JobTitleByCountry.SQL in the downloads for this session.

Listing 15. This query provides the number of employees with each job title in each country, but each record
represents one job title/country combination.

SELECT JobTitle, CR.Name, Count(*) AS EmpCount
 FROM [HumanResources].[Employee]
 JOIN [Person].[BusinessEntityAddress] BEA
 ON Employee.BusinessEntityID =
 BEA.BusinessEntityID
 JOIN [Person].[Address]
 ON BEA.AddressID = Address.AddressID
 JOIN [Person].[StateProvince] SP
 ON Address.StateProvinceID =
 SP.StateProvinceID
 JOIN [Person].[CountryRegion] CR
 ON SP.CountryRegionCode =
 CR.CountryRegionCode
 WHERE Employee.CurrentFlag = 1
 GROUP BY JobTitle, CR.Name
 ORDER BY JobTitle, CR.Name

Figure 12. Each row here shows the number of employees with the specified job title in the specified country.

A better format would have one column for each country and one row for each job title,
with the intersection of the two containing the number of employees in that country with
that job title. As in VFP, one way to get this result, especially when the number of countries
is small, is to use SUM() to do the counting, though in T-SQL, the keyword that makes it
work is CASE rather than IIF. Listing 16, included in the downloads for this session as
JobTitleByCountryCase.SQL, shows code to do it this way. Figure 13 shows partial results,
much easier to interpret than the previous version.

Listing 16. You can create a simple crosstab using CASE to break out the individual columns.

SELECT JobTitle,
 SUM(CASE CR.Name WHEN 'Australia'
 THEN 1 ELSE 0 END) AS nAustralia,
 SUM(CASE CR.Name WHEN 'Canada'
 THEN 1 ELSE 0 END) AS nCanada,

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 16 of 70

 SUM(CASE CR.Name WHEN 'France'
 THEN 1 ELSE 0 END) AS nFrance,
 SUM(CASE CR.Name WHEN 'Germany'
 THEN 1 ELSE 0 END) AS nGermany,
 SUM(CASE CR.Name WHEN 'United Kingdom'
 THEN 1 ELSE 0 END) AS nUK,
 SUM(CASE CR.Name WHEN 'United States'
 THEN 1 ELSE 0 END) AS nUSA
 FROM [HumanResources].[Employee]
 JOIN [Person].[BusinessEntityAddress] BEA
 ON Employee.BusinessEntityID =
 BEA.BusinessEntityID
 JOIN [Person].[Address]
 ON BEA.AddressID = Address.AddressID
 JOIN [Person].[StateProvince] SP
 ON Address.StateProvinceID =
 SP.StateProvinceID
 JOIN [Person].[CountryRegion] CR
 ON SP.CountryRegionCode =
 CR.CountryRegionCode
 WHERE Employee.CurrentFlag = 1
 GROUP BY JobTitle
 ORDER BY JobTitle

Figure 13. Using CASE with SUM() gives one column per country and makes the results more readable.

But T-SQL offers an easier way to do this.

Introducing PIVOT

The PIVOT operator provides a way to crosstab without having to write out all the CASE
expressions. PIVOT goes into the FROM clause of the query. Listing 17 shows the syntax
for using PIVOT.

In my experience, this is a case where it’s easiest to use “*” rather than listing specific field
names. The source table can be an actual table, a derived table, or a table created as part of
a CTE (common table expression).

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 17 of 70

Listing 17. The PIVOT operator appears in the FROM clause of a query and specifies an aggregation function.

SELECT <non-pivoted column>,
 <list of pivoted columns with aliases>
FROM <source table>
PIVOT
(<aggregation function>(<column to aggregate>)
 FOR [<column name column>]
 IN (<list of values>)
) AS <alias for the pivot table>

The interesting part is what goes after the PIVOT keyword. First, you need an aggregation
function, such as SUM(OrderTotal). After FOR, you list the name of the source column
whose values are to become columns in the result. In the job title by country example,
that’s the Country column.

Finally, after IN, you have to include a list of all the values of interest. Having an explicit list
is both a good thing and a bad thing. It’s a good thing because it allows you to include only a
subset of the values from the relevant column. It’s a bad thing, of course, because it
requires you to know the list of values from that column. (I’ll show you how to avoid
providing an explicit list in “Handling unknown data,” later in this paper.)

Listing 18 shows a query using PIVOT that produces the same results as the query in
Listing 16. A CTE collects the list of employees with their job titles and countries. The main
query uses PIVOT to count the number of employees by country. The CTE has three
columns: JobTitle, Country and EmpID. The main query specifies that all three are in the
result (SELECT *), but the PIVOT clause indicates that Country determines the columns
(that is, the column headers are the actual values from Country), and that EmpID is
aggregated, in this case, by counting. Figure 14 shows partial results. The query is included
in the downloads for this session as JobTitleByCountryPivot.SQL.

Listing 18. This query pivots on country to produce one record per job title with a column for each country
where any employees are located.

WITH csrJobCountry
 (JobTitle, Country, EmpID)
AS
(SELECT JobTitle, CR.Name,
 Employee.BusinessEntityID
 FROM [HumanResources].[Employee]
 JOIN [Person].[BusinessEntityAddress] BEA
 ON Employee.BusinessEntityID =
 BEA.BusinessEntityID
 JOIN [Person].[Address]
 ON BEA.AddressID = Address.AddressID
 JOIN [Person].[StateProvince] SP
 ON Address.StateProvinceID =
 SP.StateProvinceID
 JOIN [Person].[CountryRegion] CR
 ON SP.CountryRegionCode =
 CR.CountryRegionCode

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 18 of 70

 WHERE Employee.CurrentFlag = 1
)

SELECT *
 FROM csrJobCountry
 PIVOT(COUNT(EmpID)
 FOR Country
 IN (Australia, Canada, France, Germany,
 [United Kingdom], [United States]))
 AS EmpTotal

Figure 14. The results here are the same as in Figure 13, except for the column headers, which are the
actual country names from the CountryRegion table.

I suspect that the most commonly used function in the pivot is SUM, letting you see some
kind of total across a set of time periods or regions or other way of dividing up data. For
example, Listing 19 produces total sales for each salesperson for each year; Figure 15
shows partial results. This query is included in the downloads for this session as
SalesPersonAnnualSalesCTE.SQL.

Listing 19. This query computes total sales for each salesperson for each year.

WITH SalesByYear
 (SalesPersonID, SalesYear, SubTotal)
AS
(SELECT SalesPersonID, YEAR(OrderDate),
 SubTotal
 FROM Sales.SalesOrderHeader
 WHERE SalesPersonID IS NOT NULL)

SELECT *
 FROM SalesByYear
 PIVOT(SUM(SubTotal)
 FOR SalesYear
 IN ([2011], [2012], [2013], [2014]))
 AS TotalSales
 ORDER BY SalesPersonID

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 19 of 70

Figure 15. Each row here represents one salesperson, while each column represents a year. The intersection
shows the dollar total of sales for that salesperson for that year.

In this example, again, the CTE includes exactly three columns. One (SalesPersonID)
determines the rows, one (SalesYear) determines the columns, and one (SubTotal) is
aggregated to produce the data values.

Of course, this data would be more useful with the salespeople’s names as well as their IDs.
You can turn the query with the PIVOT into a CTE and add the names afterward, as in
Listing 20 (which is included as SalesPersonAnnualSalesWithNameCTE.SQL in the
downloads for this session. Partial results are shown in Figure 16.

Listing 20. A query that uses PIVOT can be a CTE, so you can add more data.

WITH SalesByYear
 (SalesPersonID, SalesYear, SubTotal)
AS
(SELECT SalesPersonID, YEAR(OrderDate) ,
 SubTotal
 FROM Sales.SalesOrderHeader
 WHERE SalesPersonID IS NOT NULL),

SalesByYearPivot
AS
(SELECT *
 FROM SalesByYear
 PIVOT(SUM(SubTotal)
 FOR SalesYear
 IN ([2011], [2012], [2013], [2014]))
 AS TotalSales)

SELECT Person.FirstName, Person.LastName,
 SalesByYearPivot.*
 FROM SalesByYearPivot
 JOIN Person.Person
 ON SalesByYearPivot.SalesPersonID =
 Person.BusinessEntityID
 ORDER BY LastName, FirstName

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 20 of 70

Figure 16. Salesperson names are added to this pivoted result by putting the pivot into a CTE.

Getting meaningful column names

By default, the list you include in the IN portion of PIVOT determines the names of pivoted
columns. So, in the sales example, the columns are called 2011, 2012, etc., while in the jobs
example, they’re the names of the countries. (This also explains why numeric values or
values containing spaces need to be surrounded by square brackets; that’s the standard
way of referring to a column that has a name that can’t stand alone.)

However, you can actually specify alternative names for these columns in the field list of
the query, just as you can for any field. The query in Listing 21 pulls sales data for one year
and then pivots on month. The field list changes the names for those columns from the
numeric month to the standard abbreviation. Figure 17 shows partial results, and the
query is included as SalesPerson2013MonthlySalesWithMonthNames.SQL in the
downloads for this session.

Listing 21. You can rename pivoted columns in the field list of the query.

WITH SalesByMonth
AS
(SELECT SalesPersonID,
 MONTH(OrderDate) As SalesMonth,
 SubTotal
 FROM Sales.SalesOrderHeader
 WHERE SalesPersonID IS NOT NULL
 AND YEAR(OrderDate) = 2013)

SELECT SalesPersonID,
 [1] AS Jan, [2] AS Feb, [3] AS Mar,
 [4] AS Apr, [5] AS May, [6] AS Jun,
 [7] AS Jul, [8] AS Aug, [9] AS Sep,
 [10] AS Oct, [11] AS Nov, [12] AS Dec
 FROM SalesByMonth
 PIVOT(SUM(SubTotal)
 FOR SalesMonth
 IN ([1], [2], [3], [4], [5], [6], [7],
 [8], [9], [10], [11], [12]))
 AS TotalSales
 ORDER BY SalesPersonID;

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 21 of 70

Figure 17. One year’s sales were pivoted by month. Then, the field names were replaced by something more
meaningful.

This query also shows why it’s generally easier to use SELECT * in a PIVOT. Otherwise, you
need to list each pivoted column by name.

Determining rows by multiple columns

In the examples above, the set of rows was determined by a single field, JobTitle in the first
case and SalesPersonID in the second. But it’s possible to use multiple fields to specify the
rows. All you have to do is have multiple columns in the query that aren’t listed in the
PIVOT clause.

For example, the query in Listing 22 has one row for each salesperson for each month. The
CTE result has four fields: salesperson ID, month, year and order amount (Subtotal). The
main query totals the order amount and specifies that year determines the columns. That
leaves both salesperson ID and month to specify the rows. Partial results are shown in
Figure 18. The query is included as SalesPersonMonthlySales.SQL in the downloads for
this session.

Listing 22. This query uses two fields (SalesPersonID and SalesMonth) to specify the rows in the pivoted
result.

WITH csrSalesByYear
AS
(SELECT SalesPersonID,
 MONTH(OrderDate) As SalesMonth,
 YEAR(orderDate) AS SalesYear,
 SubTotal
 FROM Sales.SalesOrderHeader
 WHERE SalesPersonID IS NOT NULL)

SELECT *
 FROM csrSalesByYear
 PIVOT(SUM(SubTotal)
 FOR SalesYear
 IN ([2011], [2012], [2013], [2014]))

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 22 of 70

 AS TotalSales
 ORDER BY SalesPersonID, SalesMonth;

Figure 18. Here, the pivot result uses two columns to distinguish the rows.

Aggregating on more than one column

A more complicated problem is computing more than one aggregate result. For example,
suppose you want to get both total sales and the number of sales by year for each
salesperson. You might think that you could simply list multiple aggregate functions after
PIVOT, but that doesn’t work.

In fact, to include multiple pivoted aggregations, you have to perform the pivots separately
and then join the results. You also have to make sure that whatever you’re selecting from
contains only the columns relevant to that particular aggregation.

The easiest way to do this is with a series of CTEs, as in Listing 23. The first two CTEs,
SalesByYear and SalesTotal, are the same as previous examples, producing one row per
salesperson with one column per year. The final CTE, SalesCount, produces one row per
salesperson with one column per year containing the number of orders for that
salesperson in that year. Finally, the main query joins SalesTotal and SalesCount on
SalesPersonID, including all the pivoted columns from each of them. Figure 19 shows
partial results. This query is included as SalesPersonAnnualSalesMulti.SQL in the
downloads for this session.

Listing 23.To pivot and aggregate on multiple columns, you have to do each pivot separately, and then join
the results.

WITH SalesByYear
 (SalesPersonID, SalesYear, SubTotal)
AS
(SELECT SalesPersonID,
 YEAR(OrderDate),
 SubTotal
 FROM Sales.SalesOrderHeader

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 23 of 70

 WHERE SalesPersonID IS NOT NULL),

SalesTotal
AS
(SELECT SalesPersonID,
 [2011] AS Total2011,
 [2012] AS Total2012,
 [2013] AS Total2013,
 [2014] AS Total2014
 FROM SalesByYear
 PIVOT(SUM(SubTotal)
 FOR SalesYear
 IN ([2011], [2012], [2013], [2014]))
 AS TotalSales),

SalesCount
AS
(SELECT SalesPersonID,
 [2011] AS Count2011,
 [2012] AS Count2012,
 [2013] AS Count2013,
 [2014] AS Count2014
 FROM SalesByYear
 PIVOT(COUNT(SubTotal)
 FOR SalesYear
 IN ([2011], [2012], [2013], [2014]))
 AS Sales)

SELECT ST.SalesPersonID,
 SC.Count2011, ST.Total2011,
 SC.Count2012, ST.Total2012,
 SC.Count2013, ST.Total2013,
 SC.Count2014, ST.Total2014
 FROM SalesTotal ST
 JOIN SalesCount SC
 ON ST.SalesPersonID = SC.SalesPersonID
 ORDER BY ST.SalesPersonID

Figure 19. By joining the results of two separate pivots, we can do two different aggregations.

In my initial attempts at doing this (because, for some reason, I mistakenly thought that
doing COUNT(Subtotal) would count only distinct values), I tried using a single CTE

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 24 of 70

containing both Subtotal and SalesOrderID as the source for both pivots. However, even
though the unneeded field was omitted from the field list of the queries performing the
pivots, the field was still used in determining the rows of the result. Every field in the
source table for a pivot is used either in determining rows, determining columns, or
aggregation. The query in Listing 24 demonstrates the issue. The CTE includes
SalesOrderID, though it’s not mentioned in the main query. Nonetheless, the results
(partially shown in Figure 20) have one row per sales order rather than one row per
salesperson. This faulty query is included in the downloads for this session as
SalesPersonAnnualExtraField.SQL

Listing 24. Every field in the table specified for a pivot is used somehow. If it’s not otherwise specified, it
helps determine the list of rows.

WITH SalesByYear
 (SalesPersonID, SalesYear, SubTotal, OrderID)
AS
(SELECT SalesPersonID, YEAR(OrderDate), SubTotal, SalesOrderID
 FROM Sales.SalesOrderHeader
 WHERE SalesPersonID IS NOT NULL)

SELECT SalesPersonID,
 [2011] AS Total2011,
 [2012] AS Total2012,
 [2013] AS Total2013,
 [2014] AS Total2014
 FROM SalesByYear
 PIVOT(SUM(SubTotal)
 FOR SalesYear
 IN ([2011], [2012], [2013], [2014])) AS TotalSales

Figure 20. Because the table used for this pivot includes SalesOrderID, the result has one row per sales order,
rather than just one per salesperson.

Handling unknown data

The biggest issue to me with these examples is the need to actually list out the values in the
field that determines the result columns. It means that you have to know what data to

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 25 of 70

expect and more importantly, that query results may be wrong if there’s data you didn’t
expect.

Fortunately, there’s a solution, using dynamic SQL. You can store a query in a string and
then execute it; it’s similar to using the & macro operator or the ExecScript() function in
VFP. Full details on dynamic SQL are beyond the scope of this paper, but you don’t have to
know much to use it for pivoting without knowing the values of the field you want to pivot
on. I’ll cover it in the context of the example in Listing 19, seeing total sales by salesperson
for each year; the complete code is in Listing 25 and included in the downloads for this
session as SalesPersonAnnualSalesDynamic.SQL.

You need two variables, one to hold the list of values and one to hold the query you
construct. In the example, they’re called @years and @query. Step one is to run a query to
store the list of distinct values in the first variable. It takes advantage of SQL’s ability to
populate a variable via a query. The QUOTENAME() function converts to character
(actually varchar) and adds delimiters to make sure the result can serve as an identifier. In
this example, @years is assigned the value '[2011],[2012],[2013],[2014]’, that is, exactly
the list we’ve been hard-coding in the previous examples.

Step two is to build a string that contains the query we want to execute. The SET command
here simply fills @query with the same query we’ve been using, except that instead of
hard-coding the list of years, we plug in the computed value in @years.

Finally, we call the built-in stored procedure sp_executesql to execute the query we’ve
built. The first parameter to sp_executesql is always the statement to execute. It can accept
additional parameters to be used in executing that statement, but in this case, we don’t
need any.

Listing 25. When you don’t know the list of values for the column you want to pivot on, you can retrieve a list
of values and use dynamic SQL to do the actual pivot.

DECLARE @query AS NVARCHAR(max);
DECLARE @years AS NVARCHAR(max);

-- Get the list of years
WITH DistinctYear (nYear)
AS
(SELECT DISTINCT YEAR(OrderDate)
 FROM Sales.SalesOrderHeader)

SELECT @years = ISNULL(@years + ', ', '') + QUOTENAME(nYear)
 FROM DistinctYear
 ORDER BY nYear;

-- Build the query including the list of years
SET @query =
 'WITH SalesByYear
 AS
 (SELECT SalesPersonID,
 YEAR(OrderDate) AS SalesYear,

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 26 of 70

 SubTotal
 FROM Sales.SalesOrderHeader
 WHERE SalesPersonID IS NOT NULL)

 SELECT *
 FROM SalesByYear
 PIVOT(SUM(SubTotal)
 FOR SalesYear IN (' + @years + '))
 AS TotalSales
 ORDER BY SalesPersonID';

-- Run the query
EXEC sp_executesql @query;

Not surprisingly, this example produces the same results as the one where the years are
hard-coded; they’re shown in Figure 15.

The query that produces the list of years deserves a little more attention, since it does
something you can’t do with a single query in VFP. First, as noted above, rather than storing
its result in some kind of table, it puts the result into a variable (@years); that’s what
SELECT @years = does. The more interesting piece is that @years appears on the right-
hand side of the equals sign, as well. So the result is built up one record at a time. For the
first record, @years is null, and ISNULL(@years + ', ', '') returns the empty string.
After that, it returns the string so far with a trailing comma and space. For each record, we
then add the bracketed version of the year.

The one big advantage of having to list each value in PIVOT’s IN section is that you can limit
the result to a specified subset of the data. To do that when generating the list of values
dynamically, there has to be a rule you can apply in the query that assembles the list of
values. For example, if you’re only interested in sales in 2013 and later, you can add a
WHERE clause to the CTE of the query that populates @years, as in Listing 26. If you want
to see sales for the last three years, you could specify YEAR(GETDATE())-2 rather than
2013 in the WHERE clause.

Listing 26. You can limit the column list by filtering the query that collects the list of values.

-- Get the list of years
WITH DistinctYear (nYear)
AS
(SELECT DISTINCT YEAR(OrderDate)
 FROM Sales.SalesOrderHeader
 WHERE YEAR(OrderDate) >= 2013)

SELECT @years = ISNULL(@years + ', ', '') + QUOTENAME(nYear)
 FROM DistinctYear
 ORDER BY nYear;

Undoing PIVOT

SQL Server lets you undo pivots through the UNPIVOT keyword, though you can’t always
get back to the original data (because of the aggregation performed as part of the pivot

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 27 of 70

process). The syntax for UNPIVOT is quite similar to the syntax for PIVOT; it’s shown in
Listing 27.

Listing 27. The syntax for UNPIVOT is pretty much the same as for PIVOT, except there’s no aggregation
function involved.

SELECT <row identifier columns>,
 [<column identifier column>,]
 <column to extract>
FROM <source table>
UNPIVOT
(<column to extract>
 FOR [<generic name for group of columns>]
 IN (<list of columns to unpivot>)
) AS <alias>

For UNPIVOT, you generally list out the columns you want. Depending on the data you’re
unpivoting, you may or may not want to turn the column names into data. (That’s the
optional “<column identifier column>” in the syntax.) In addition, the columns you want in
the result can be listed in any order.

The key items are to provide a name for the column to contain the data you’re unpivoting
(shown as “<column to extract>” in the syntax diagram), and to provide a list of the
columns that contain data following the IN keyword. The latter is the same information you
provide to PIVOT, but here it’s the column names rather than the values in a particular
column. The item that follows the FOR keyword is simply a name to let you refer to that list
as a group; that lets you include them as data in the result. As you’ll see later in this paper,
it also allows you to operate on those column names as data.

Let’s start with a simple example that reverses (sort of) the annual sales pivot. Assume that
rather than simply returning the result of the query in Listing 19, we’ve stored it in a
temporary table called #SalesByYearCT. Listing 28 shows how to unpivot that result and
get one row per salesperson per year; it’s included in the downloads for this session as
UnpivotSales.SQL. The query lists the three fields we want in the result: the salesperson’s
ID, the year, and the total sales for that salesperson in that year. Inside the UNPIVOT
section, we first specify that the data in the columns we’re unpivoting should go into a
column called AnnualSales. Then, we indicate that those columns are the ones named
[2011], [2012], [2013] and [2014]. The name SalesYear is assigned to that group of fields,
and matches up with the name in the field list, so that the year appears in the result. The
alias for the UNPIVOT (SalesPersonYear) is required, but doesn’t actually add anything.

Listing 28. The query sort of unpivots the result of the query in Listing 19.

SELECT SalesPersonID, SalesYear, AnnualSales
 FROM #SalesByYearCT
 UNPIVOT (AnnualSales
 FOR SalesYear
 IN ([2011], [2012], [2013], [2014]))
 AS SalesPersonYear;

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 28 of 70

Figure 21 shows partial results and explains why I said this query “sort of” reverses the
original. The query in Listing 19 starts with the raw sales data, one record per sales order.
But the original query aggregates those records. UNPIVOT has no way to disaggregate that
aggregated data.

Figure 21. The unpivoted annual sales have one record per salesperson per year.

Using UNPIVOT to normalize data

UNPIVOT is useful for normalizing data. It’s quite common to find databases that are not
normalized, particularly tables that use multiple columns for essentially the same data.
UNPIVOT lets you gather that data into a single column.

The AdventureWorks database doesn’t have any such examples. So to demonstrate this use
of UNPIVOT, we’ll have to create our own example data. (These examples are inspired by
and adapted from Aaron Bertrand’s article on UNPIVOT at http://tinyurl.com/grlkfyf.)

One of the most common examples of multiple columns rather than normalized data is the
use of separate fields for different phone numbers, that is, having fields named Phone1,
Phone2, etc., or Home, Mobile and Work. Listing 29 creates and populates a simplified
table that uses the latter approach. (To make it easy to see that the normalization code
works, the phone numbers here use a pattern. The exchange—the 4th through 6th digits—
for all home numbers is 555; for mobile numbers, it’s 666; and for work numbers, it’s 777.
In addition, each number for an individual has the same last four digits. None of this makes
a difference in how the code works; it simply makes checking the results easier.) Figure 22
shows the data in the #Person table.

Listing 29. This code creates and populates a temporary table that uses separate named fields for home,
mobile and work phone numbers.

CREATE TABLE #Person
(First varchar(15), Last varchar(20),
 Home varchar(10), Mobile varchar(10),

http://tinyurl.com/grlkfyf

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 29 of 70

 Work varchar(10))
INSERT INTO #Person VALUES
 ('Jane', 'Smith', '5555551234', '5556661234', '5557771234'),
 ('Andrew', 'Jones', '5555557890', '5556667890', '5557777890'),
 ('Deborah', 'Cohen', NULL, '5556667474', '5557777474');

Figure 22. This approach to storing phones is not normalized and means the data structure has to change to
accommodate each new type of phone.

With the proliferation of phone numbers for an individual, it makes much more sense to
use a separate table to contain all phone numbers with one record per phone per person.
The query in Listing 30 extracts the data from the #Person table in the desired format. The
result, shown in Figure 23, includes a column to indicate the type of phone; it’s populated
based on the column names in the original. Note also that there’s no home phone record for
Deborah Cohen, since the Home field was NULL. The downloads for this session include
NormalizePhones.SQL, which creates the temporary #Person table and has the query to
normalize the data.

Listing 30. This query normalizes the phone data, using the column names to indicate the type of phone.

SELECT First, Last, PhoneType, Phone
 FROM #Person
 UNPIVOT (Phone
 FOR PhoneType
 IN (Home, Mobile, Work)) AS Phones;

Figure 23. The normalized phone data is much more flexible.

The PhoneType column in this result is optional. If, for some reason, you don’t want to
include it, you can just leave it out of the field list, as in Listing 31. In this example, it’s hard
to see why you’d want to do that, but if the original columns were simply Phone1, Phone2
and Phone3, it would make sense.

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 30 of 70

Listing 31. This version of the query normalizes the phone data without including the phone type
information from the column name.

SELECT First, Last, Phone
 FROM #Person
 UNPIVOT (Phone
 FOR PhoneType
 IN (Home, Mobile, Work)) AS Phones;

Figure 24. You can normalize without including the name of the column where the data originated.

Normalizing multiple columns

What if rather than a single set of columns that need to be normalized, you have multiple
related sets? Again, telephone numbers provide a simple example. Suppose that instead of
having one column per phone number, named with the phone type, you have a pair of
columns for each phone number, one indicating the type and the second containing the
phone number. As long as the column names follow a pattern, UNPIVOT lets you normalize
without losing any of the data.

Listing 32 creates and populates a different version of the #Person table. In this version,
there are three pairs of columns, named Phonen and PhonenType. Each holds one phone
number, along with its type, and a person can have up to three. The data here is the same as
in the previous version of the table, except that I’ve consciously changed the order of the
phone numbers in one record. As in the previous example, Deborah Cohen has no home
number. Figure 25 shows the table’s contents.

Listing 32. This version of the #Person table uses two columns for each phone number, to specify the number
and the type.

CREATE TABLE #Person
 (First varchar(15), Last varchar(20),
 Phone1 varchar(10), Phone1Type varchar(6),
 Phone2 varchar(10), Phone2Type varchar(6),
 Phone3 varchar(10), Phone3Type varchar(6));
INSERT INTO #Person VALUES
 ('Jane', 'Smith',
 '5555551234', 'Home',
 '5556661234', 'Mobile',
 '5557771234', 'Work'),
 ('Andrew', 'Jones',
 '5556667890', 'Mobile',

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 31 of 70

 '5557777890', 'Work',
 '5555557890', 'Home');
INSERT INTO #Person
 (First, Last, Phone1, Phone1Type,
 Phone2, Phone2Type) Values
 ('Deborah', 'Cohen',
 '5556667474', 'Mobile',
 '5557777474', 'Work');

Figure 25. In this version of the #Person table, each phone number has separate columns for number and
type.

Surprisingly, given that doing multiple pivots requires separate queries, you can do
multiple unpivots in a single query. That’s what’s required to normalize this data, as shown
in Listing 33 (included as NormalizePhoneAndType.SQL in the downloads for this
session); the result is shown in Figure 26. This example also shows how you can
manipulate the data in the new collective columns.

Listing 33. You can unpivot multiple related fields in a single query.

WITH AllPhones AS

(SELECT First, Last, Phone, PhoneType,
 RIGHT(Phones, 1) AS nPhone,
 SUBSTRING(PhoneTypes, 6, 1) AS nPhoneType
 FROM #Person
 UNPIVOT
 (Phone FOR Phones IN (Phone1, Phone2, Phone3)) AS PhoneList
 UNPIVOT
 (PhoneType FOR PhoneTypes
 IN (Phone1Type, Phone2Type, Phone3Type)) AS PhoneTypeList)

SELECT First, Last, Phone, PhoneType
 FROM AllPhones
 WHERE nPhone = nPhoneType;

Figure 26. Using a pair of UNPIVOTs and a little more work, we can normalize a table involving multiple
related fields.

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 32 of 70

The actual unpivots are done in a CTE. First, we unpivot the phone number fields,
specifying Phone as the field to hold the data, Phones as the collective name for the existing
fields and listing them as Phone1, Phone2, and Phone3. The second unpivot does the same
thing for the phone types, indicating that the data goes into PhoneType, the collective name
for the existing fields is PhoneTypes and specifying the list of those fields as Phone1Type,
Phone2Type and Phone3Type.

However, the pair of UNPIVOT clauses operate like a cross-join (also known as a Cartesian
join); each item unpivoted from the first is joined to each item unpivoted from the second.
We need a way to match up the corresponding numbers and types. The two extra fields in
the CTE give us what we need to do that. They’re also the reason we can only do this if
there’s a pattern to the field names. The first pulls out the digit from the phone number
field name, while the second does the same for the phone type field. Each of those
expressions uses the collective name for the list of fields as the way to find the name of the
original field for that data item.

Figure 27 shows partial results from running just the query in the CTE. For Jane Smith,
with three phone numbers, there are 9 records, one for each match of each phone number
with each phone type. But the only valid records are those where nPhone and nPhoneType
match.

Figure 27. The two UNPIVOTs in the CTE in Listing 33 do a cross-join of the unpivoted data. The additional
fields nPhone and nPhoneType help us see where each item originated, so that the main query can filter out
the mismatches.

With that data available, the main query in Listing 33 keeps only those records for
corresponding phone numbers and phone types.

Unpivoting unknown columns

It seems less likely to me that you might need to unpivot without knowing the column
names, but I guess there can situations where data comes in from multiple sources with

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 33 of 70

different numbers of unnormalized columns. Fortunately, you can build the list of columns
for the unpivot and use dynamic SQL here, too. As in the matched columns example, doing
so depends on the relevant column names following a pattern.

The key to doing this is to use the system columns table (that is, a system table named
Columns that contains information about the columns in the database) to extract the
relevant list. The columns of interest in that table are Name, which contains the field name,
and Object_ID, which identifies the table to which the field belongs. As with the dynamic
pivot, we need QUOTENAME() to wrap the field names to ensure they’re valid. Listing 34
shows the code to create and run the query from Listing 33; it’s included in the downloads
for this session as DynamicUnpivot.SQL. (This example is inspired by and adapted from
Aaron Bertrand’s article at http://tinyurl.com/z464ll9.)

Listing 34. You can build the list of fields and use dynamic SQL to unpivot when you’re not sure how many
fields you have.

-- Use variables here. In production,
-- these might be parameters
DECLARE @table AS NVARCHAR(max) = N'tempdb..#Person';
DECLARE @phonenames AS NVARCHAR(max) = N'Phone[0-9]';
DECLARE @typenames AS NVARCHAR(max) = N'Phone[0-9]Type';

DECLARE @phonecols AS NVARCHAR(max);
DECLARE @typecols AS NVARCHAR(max);
DECLARE @query AS NVARCHAR(max);

SELECT @phonecols = ISNULL(@phonecols + ', ', '') + QUOTENAME(Name)
 FROM tempdb.sys.Columns
 WHERE Object_ID = OBJECT_ID(@table)
 AND Name LIKE @phonenames;

SELECT @typecols = ISNULL(@typecols + ', ', '') + QUOTENAME(Name)
 FROM tempdb.sys.columns
 WHERE object_id = OBJECT_ID(@table)
 AND name LIKE @typenames;

SET @query =
'WITH AllPhones AS
 (SELECT First, Last, Phone, PhoneType,
 RIGHT(Phones, 1) AS nPhone,
 SUBSTRING(PhoneTypes, 6, 1) AS nPhoneType
 FROM #Person
 UNPIVOT
 (Phone FOR Phones
 IN (' + @phonecols +')) AS PhoneList
 UNPIVOT
 (PhoneType FOR PhoneTypes
 IN (' + @typecols +')) AS PhoneTypeList)

SELECT First, Last, Phone, PhoneType
 FROM AllPhones
 WHERE nPhone = nPhoneType';

http://tinyurl.com/z464ll9

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 34 of 70

-- Run the query
EXEC sp_executesql @query;

First, we declare several variables that hold information about the query we need to build.
As the comment says, in real code, these might be parameters to a stored procedure. The
first, @table, identifies the table containing the data we want to normalize. Because we’re
working with a temporary table here, it needs the “tempdb..” prefix. The next two,
@phonenames and @typenames, specify the pattern for the two sets of columns we’re
interested in.

Next, we declare variables to hold the two lists of columns and the query to be executed.

Then, two consecutive, quite similar queries populate the @phonecols and @typecols
variables by extracting the list from the system Columns table. (Here again, we specify
tempdb because we’re interested in the columns of a temporary table. For a permanent
table, you can omit that.) The strategy for building each list is the same as in the dynamic
pivot example; start with a null string and build it up. The OBJECT_ID() function looks up
the unique identifier for the table of interest, so that we consider only fields from that table.

Next, we populate the @query variable with the query of interest, plugging in the field
names from the two variables @phonecols and @typecols.

Finally, we call sp_executesql to run the query we’ve built. Not surprisingly, in this case, we
get the same results as for the static query, shown in Figure 26.

Reporting on crosstab and pivot data
Reporting on crosstab/pivot data offers some challenges, because we may not know how
many columns are in the data or the names of those columns. But as noted earlier in this
paper, the main reason for creating crosstabs and pivots is reporting.

The remainder of this paper is devoted to various ways to report on crosstabs and pivots.
I’ll cover traditional VFP reports, as well as exporting the data to Excel, creating Excel pivot
tables, and charting in both Excel and VFP. For VFP reports, I’ll show a technique I first
learned roughly 20 years ago in a FoxTalk article by Nancy Jacobsen. Improvements in the
Report Designer since then make the technique easier to use today.

The Problem with Reports

To create a report in VFP’s Report Designer, you drop controls onto the report and position
them as desired. (There’s lots more you can do, but that’s the core activity.) To include
fields, you use the Field control, which lets you specify an expression using the dialog
shown in Figure 28. For most reports, the expression for most Field controls is simply a
field of a table or cursor. Sometimes, you add formatting with TRANSFORM() or combine a
table field with some fixed text or combine multiple fields into a single report field.

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 35 of 70

Figure 28. The Field Properties dialog lets you specify what a Field control in a report shows. Most often, it’s
just a field of a table or cursor.

The key point is that the expression includes the name of the field. When reporting on a
crosstab, you may not know the name of each field in the cursor at the time you design the
report.

Even trickier, because the list of fields in the crosstab result depends on the values in the
original data, you may not know how many fields are in the crosstab result. In addition, it’s
possible to have more fields than fit on a single page.

For example, the query in Listing 9 (earlier in this paper; Figure 7 shows partial results)
computes the total sales, average sale and number of sales for each employee for each year.
The number of columns in the result depends on the number of years for which there is
data. Columns have names like N_1997 (for total sales in 1997).

FIELD() and EVAL() to the rescue

The solution to not knowing the field names is to not put them into the report. Instead, use
the FIELD() function. As the syntax shown in Listing 35 indicates, FIELD() accepts two
parameters. The first is the field number; it’s required. The second parameter is optional
and specifies the table you’re interested in.

Listing 35. The FIELD() functions lets you refer to fields without knowing their names.

cFieldName = FIELD(nFieldNumber [, cAlias | nWorkarea])

So rather than referring to N_1997 in the report, we can refer to FIELD(6). Using FIELD()
solves the problem of not knowing the actual field names.

To determine the contents of a field by its position, wrap the EVAL() function around the
FIELD() function. EVAL() is short for EVALUATE() and that’s what it does. The function

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 36 of 70

evaluates the expression you pass to it and returns the result. (I wrote at length about
EVAL() and related language in this article.)

So to get the value of N_1997 for the current record, use EVAL(FIELD(6)).

How many fields?

The other problems are that we don’t know how many columns we need in a report and we
don’t know whether they’ll fit on a single page. We solve these two together by creating a
report with as many fields as fit and then running it as many times as necessary to show all
fields. Doing so requires a combination of a report and code to control it.

We’ll return to the example in Listing 9 later, but first let’s consider a simpler example. The
code in Listing 36 computes sales for each employee for a given year (1997) by month.
(It’s the same as the code in Listing 13, except for the year in the filter.) There’s one
column in the result for each month of the year. In this case, we know how many columns
there are and their names, but they still don’t fit onto a single page. Figure 29 shows
partial results; in keeping with the theme of this section, they’re cut off on the right.

Listing 36. This crosstab computes sales by employee by month for a single year.

SELECT EmployeeID, OrderDate, ;
 SUM(Quantity*UnitPrice) AS OrderTotal ;
 FROM Orders ;
 JOIN OrderDetails ;
 ON Orders.OrderID = OrderDetails.OrderID ;
 GROUP BY 1, 2 ;
 INTO CURSOR csrMonthlyTotals

LOCAL oXTab AS FastXTab OF "fastxtab.prg"

oXTab = NEWOBJECT("fastxtab", "fastxtab.prg")
WITH oXTab AS FastXTab OF fastxtab.prg"
 .cRowField = 'EmployeeID'
 .cColField = 'MONTH(OrderDate)'
 .cDataField = 'OrderTotal'
 .cOutFile = "csrXtab"
 .cCondition = 'year(OrderDate) = 1997'
 .lCursorOnly = .T.
 .lCloseTable = .T.
 .RunXtab()
ENDWITH

* Add employee name
SELECT PADR(ALLTRIM(FirstName) + (' ' + LastName), 30) AS cName, ;
 csrXtab.* ;
 FROM csrXtab ;
 JOIN Employees ;
 ON csrXtab.EmployeeID = Employees.EmployeeID ;
 ORDER BY LastName, FirstName ;
 INTO CURSOR csrReport

http://www.tomorrowssolutionsllc.com/Articles/Handling%20Code%20that%20Changes%20at%20Runtime.pdf

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 37 of 70

Figure 29. This cursor contains sales for each employee for each month of a single year.

We can refer to the data fields in this cursor as FIELD(3), FIELD(4), and so on, but how can
we get them all into a report?

First, we need to figure out how many data columns we can fit on a page. I decided to keep
the paper in portrait mode (you can fit more columns in landscape, of course) and a little
experimentation showed me that along with the employee’s name, four data columns
would fit. Figure 30 shows the report; we’ll dig into its contents in the next section.

Figure 30. We can fit the employee’s name and four months’ data on one page in portrait mode.

Once we know how many columns fit, we can figure out how many pages we’ll need. (I’m
using the word “page” here to indicate pages across. It’s entirely possible that there could
be enough records in the cursor to print multiple pages of length, as well.) In the code to
drive the report, we can set a variable, nFieldsPerPage, to that value (4, in this case). We
also need to know where in the cursor the data fields start. In this case, they start in column
3, because column 1 is the employee name and column 2 is the employee number. Store
that number in a variable as well; I call it nFirstDataCol. With that information, we can
divide the total number of data fields by fields per page, to determine the number of pages.
Listing 37 shows this part of the code.

Listing 37. To make the report work, we need to ask some questions about the data: how many fields there
are total, where the data fields start, and how many fields fit on a page. Using those, we can determine the
number of pages we need.

nFieldCount = FCOUNT("csrReport")

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 38 of 70

nFirstDataCol = 3
nFieldsPerPage = 4
nPages = CEILING((m.nFieldCount - m.nFirstDataCol)/m.nFieldsPerPage)

Obviously, though, we only want to create a single report, not a separate report for each
page. So we need to specify the fields and headings in the report in a way that works for
each page. Using FIELD() is clearly part of the answer, but we also need to calculate the
parameter we pass to FIELD(), so that for each page of the report, we get the right subset of
fields. Listing 38 shows the code that actually runs the report. The key is the calculation of
nPageBase, a variable that determines the position of the first data column on each page.
For our example, on the first page, nPageBase = 3, the first data column. On the second
page, nPageBase = 7, and so on. We can use nPageBase in the report to figure out which
fields appear on this page.

Listing 38. We run the report in a loop, once for each page.

FOR m.nPage = 1 TO m.nPages
 nPageBase = (m.nPage-1) * m.nFieldsPerPage + m.nFirstDataCol

 REPORT FORM WideMonthlySales PREVIEW
ENDFOR

Making the report generic

The final piece is to design the report to use the pieces we’ve collected. The column
headings, the fields themselves and any totals need to be generic.

We can assume that we only print a page if we have at least one data column to show there,
but any other data column may or may not appear on the last page. In the sales by month
example we’re working on, there are 12 data columns (one per month) and 4 data columns
per page, so in fact, this isn’t an issue. But we’ll look at how to handle it anyway.

In the first data column, to show the value, we use EVAL(FIELD(m.nPageBase)), as in
Figure 31.

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 39 of 70

Figure 31. The expression for the value of the first data field on the page is fairly simple because we know
that it will always be present.

For the other data columns, we need to do two things. First, we need to count upward from
nPageBase, so the second data column will show data from FIELD(m.nPageBase + 1), the
third from FIELD(m.nPageBase + 2) and so on.

Second, we need to consider the possibility that we’ve reached the end of the data columns.
To handle that case, we wrap the expression in IIF(), as in Listing 39, which shows the
expression for the fourth data column. Figure 31 shows the expression in the Field
Properties dialog.

Listing 39. After the first data column on the page, we have to take into account the possibility that there is
no such column.

iif(m.nPageBase + 3 <= m.nFieldCount, eval(field(m.nPageBase + 3)), 0)

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 40 of 70

Figure 32. For data columns after the first, we use IIF() so that we don’t try to evaluate a field that doesn’t
exist.

As the expression indicates, though, we’re still returning 0 when there’s no field. We want
to make sure nothing appears in a column for which there’s no corresponding field. To do
that, we use the Report Designer’s Print When capability, specifying the same condition we
used in IIF(). Figure 33 shows the dialog.

Figure 33. To prevent anything from showing up for a non-existent column, we use the Print When tab of the
Field Properties dialog.

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 41 of 70

For column totals, you apply the same techniques, using EVAL(FIELD()), adding IIF() for
data columns after the first, and setting the total field to print only when the column exists.

Column headings use similar techniques, but need a little creativity because the field names
in a crosstab may not be terribly informative. In this example, they look like N_1, N_2, etc.
We know that the number at the end is the month number we’re interested in, so we can
use that to build an informative heading.

As before, we know we’ll have data in the first column on the page. For the first data
column, we use the expression in Listing 40. Explaining from the inside out, we grab the
field name and extract everything after the underscore. We convert that from character to
numeric, and then use it as the month parameter to DATE(). Finally, we call CMONTH() to
get the name of the month.

Listing 40. To get a meaningful column heading, we extract the numeric part of the field name, build a date
using that number for the month and then get the month name.

CMONTH(date(m.nReportYear, eval(strextract(field(m.nPageBase),"_")), 1))

For subsequent columns, we need to wrap the heading in the same IIF() condition we used
for the data values and totals, and specify Print When to make the column appear only
when it actually exists.

For this example, that’s everything. Figure 34 shows the first page of the report; Figure 35
shows the last (third) page. The downloads for this session include
ReportSalesPersonMonthly.prg, which puts the whole process together, including running
the report, and WideSalesAvgCount.frx, the report itself.

Figure 34. When we run the loop, we see each (width) page of the report one at a time.

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 42 of 70

Figure 35. In this example, the final page has the same number of columns as the others, but that’s not
required.

Handling more complicated data

Sometimes, as in Listing 9, the data created by the crosstab is more complex. That code
creates a cursor with three data columns for each year. In the report, we want all three of
those columns on the same page. So we need to make sure that the number of data columns
per page is a multiple of 3. I chose to put 6 data columns, two years’ worth on a page.
Figure 36 shows the report layout; it’s included in the downloads for this session as
WideSalesAvgCount.frx.

Figure 36. There’s room for two years’ data on one page in this report.

Ideally, we should group the column headings as well, and show the year above the three
columns for that year. In this case, the field names are in the form N_1996, etc., so it’s easy
to parse the year portion out and build an expression, as in Listing 41.

Listing 41. We want one column heading across all three columns for a year. This expression parses the year
from the name of the first of the three fields for that year.

substr(field(nPageBase + 1), 3) + ' sales'

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 43 of 70

As before, after the first data column on a page, we need to make sure there’s actually data.
In this case, because we know the data columns come in groups of 3, we don’t have to check
until we get to column 4, the beginning of the second year’s data on the page. Figure 37
shows the Field Properties dialog for the heading over the 4th, 5th and 6th data columns on
the page.

Figure 37. This heading for the second year’s data on the page uses IIF() to make sure there is actual data to
report.

This report also addresses an issue ignored in the previous example, handling the lines
under headings (and, if you have them, between rows or before totals). You really only
want lines where there’s data. Here, each year’s data has a separate line under its headings.
The line for the second group on the page has a Print When condition to ensure that it
appears only when there’s actually data. Figure 38 shows the Print When tab of the Line
Properties dialog with the expression.

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 44 of 70

Figure 38. This Print When condition ensures that the underline for the second year’s headings shows up
only if there is a second year on the page.

The data fields themselves use the same EVAL(FIELD(n)) approach as in the previous
example. The fields for the second year on the page are wrapped with IIF() and have a
matching Print When condition.

The code to drive the report is pretty much the same as in the previous example, figuring
out how many fields there are and how many pages, then looping to run the report
repeatedly. The complete program to drive this report is included in the downloads for this
session as ReportSalespersonAnnualSumAvgCnt.prg.

Figure 39 shows the first page of the report, while Figure 40 shows the final (second)
page. Note that the right-hand side in Figure 40 is entirely blank, with no headings, no
values, and no lines.

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 45 of 70

Figure 39. The first page of the report includes data for two years.

Figure 40. The last page of the report has data for only one year.

Sending crosstabs to Excel

Exporting crosstab data to Excel can be a great solution because Excel can handle lots of
columns, and the various export techniques don’t generally require you to know how many
columns you have ahead of time. In addition, sending data to Excel gives users the change
to do additional crunching on it as needed.

We can export the crosstab data as is or we can send raw data and use Excel’s pivot table
capabilities to cross-tab it there. We’ll look at both options.

We’ll work with the example in Listing 42, which collects sales by employee by month.

Listing 42. This code produces a cursor with one row for each employee for each month in which the
employee had any sales.

SELECT EmployeeID, ;
 YEAR(OrderDate) AS Year, ;

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 46 of 70

 MONTH(OrderDate) as Month, ;
 SUM(Quantity*UnitPrice) AS OrderTotal ;
 FROM Orders ;
 JOIN OrderDetails ;
 ON Orders.OrderID = ;
 OrderDetails.OrderID ;
 GROUP BY 1, 2, 3 ;
 INTO CURSOR csrMonthlyTotals

* Add employee name
SELECT PADR(ALLTRIM(FirstName) + (' ' + LastName), 30) AS cName, ;
 csrMonthlyTotals.* ;
 FROM csrMonthlyTotals ;
 JOIN Employees ;
 ON csrMonthlyTotals.EmployeeID = Employees.EmployeeID ;
 ORDER BY LastName, FirstName ;
 INTO CURSOR csrReport

Sending cross-tabbed data to Excel

The simpler solution is to take the crosstab or pivot results and just send them to Excel.
Depending how much control you want, there are a variety of ways to do this.

The code in Listing 43 gives us the crosstabbed results, with one row per employee and
one column per month. The combined code from these two listings is included in the
downloads for this session as CrossTabSalesPersonMonthly.prg.

Listing 43. This code creates a crosstab from the results of the query in Listing 42.

LOCAL oXTab AS FastXTab OF "fastxtab16\fastxtab.prg"

oXTab = NEWOBJECT("fastxtab", "fastxtab16\fastxtab.prg")
WITH oXTab AS FastXTab OF "fastxtab16\fastxtab.prg"
 .cOutFile = "csrXtab"
 .cRowFIELD = "cName"
 .cColField = [PADL(OrdYear,4) + "-" + PADL(OrdMonth,2)]
 .cDATAFIELD = "OrderTotal"
 .lCursorOnly = .T.
 .lCLOSETABLE = .T.
 .RunXtab()
ENDWITH

The most basic way to send this data to Excel is the COPY TO command. You have two
output options, Excel data or CSV (comma-separated value). The only difference in the
COPY TO command is the keyword you place after TYPE. To create an Excel file, use XL5;
for a CSV, use CSV.

COPY TO actually supports two different Excel types, XLS and XL5. Both are somewhat
outdated. XLS is the file format from Excel 2.0. Do not use it; it has two important
limitations. First, dates aren’t handled property. Second, it’s limited to 16,384 rows.
(Obviously, this is not an issue for our example, but might be in other cases.)

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 47 of 70

TYPE XL5 handles dates properly, but is limited to 32,767 rows. That’s one reason you may
prefer TYPE CSV, which doesn’t have that limit and is treated by Excel as if it were a native
type. (As this discussion implies, COPY TO has no way to create the more recent XLSX file;
see the next section for options for doing that.)

Listing 44 shows the code to export to TYPE XL5; the code is included in the downloads for
this session as ExportToXL5SalesPersonMonthly.prg. Figure 41 shows partial results
before doing any formatting in Excel.

Listing 44.This code exports the crosstab results to Excel directly.

LOCAL cXLSFile
cXLSFile = FORCEPATH(FORCEEXT("SalesPersonMonthly", "XLS"), SYS(2023))

COPY TO (m.cXLSFile) TYPE XL5

Figure 41. When you export with COPY TO, the data is simply dumped into an Excel file with no formatting.

The code to export to CSV is nearly identical; it’s shown in Listing 45 and included as
ExportToCSVSalespersonMonthly.prg in the downloads for this session. When you open the
file in Excel, before doing any formatting, it looks almost identical to Figure 41. (The only
difference I see is in the font used. On my Windows 7 computer, the XLS file uses 10-point
Arial, while the CSV uses 11-point Calibri, my default for Excel.)

Listing 45. Exporting to a CSV file is another way to get data into Excel.

LOCAL cCSVFile
cCSVFile = FORCEPATH(FORCEEXT("SalesPersonMonthly", "CSV"), SYS(2023))

COPY TO (m.cCSVFile) TYPE CSV

If you need to format the spreadsheet before passing it along to users, you can use
Automation to open it in Excel and do the formatting.

Creating XLSX files

Given that the XLSX format first appeared in Office 2007, your users may want that rather
than the older XLS or CSV format. One easy way to create an XLSX is to generate an XLS or
CSV file with COPY TO, and then use Automation to save it in a newer format. The code in

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 48 of 70

Listing 46 (included as ExportToXLSXSalespersonMonthly.prg in the downloads for this
session) does that, with a few safeguards in case Excel or the workbook can’t be opened.

Listing 46. This code exports data to Excel using COPY TO and then opens the XLS file and saves it in the XLSX
format.

LOCAL cXLSFile, cXLSXFile
LOCAL oXL, oWorkbook, lSuccess

cXLSFile = FORCEPATH(FORCEEXT("SalesPersonMonthly", "XLS"), SYS(2023))
cXLSXFile = FORCEEXT(m.cXLSFile, "XLSX")

COPY TO (m.cXLSFile) TYPE XL5

TRY
 oXL = CREATEOBJECT("Excel.Application")
 lSuccess = .T.
CATCH
 MESSAGEBOX("Unable to open Excel.")
 lSuccess = .F.
ENDTRY

IF m.lSuccess
 TRY
 oWorkbook = oXL.Workbooks.Open(m.cXLSFile)
 lSuccess = .T.
 CATCH
 MESSAGEBOX("Unable to open workbook in Excel for conversion to XLSX.")
 lSuccess = .F.
 oXL.Quit()
 ENDTRY
ENDIF

IF m.lSuccess
 TRY
 oWorkbook.SaveAs(m.cXLSXFile, 51) && 51 = xlOpenXMLWorkbook
 CATCH
 MESSAGEBOX("Unable to convert workbook to XLSX.")
 ENDTRY
 oXL.Quit()
ENDIF

As before, you still need to format the workbook afterward; the result looks the same as
Figure 41.

In addition, this approach requires Excel 2007 or later to be installed on the machine
where the code is running. The VFP world being what it is, there are several open source
projects that allow you to create XLSX files without Excel. I’ll briefly cover two of them
here.

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 49 of 70

XLSX Workbook
XLSX Workbook comes from Greg Green, who has created a number of utilities for VFP
developers. This one is a class that lets you not only export data to Excel, but format it as
well. Even better, it has extensive documentation. It’s included in the downloads for this
session, but you can download the latest version from https://github.com/ggreen86/XLXS-
Workbook-Class.

Exporting a table or cursor takes just a couple of lines of code, as in Listing 47. First, you
instantiate the VFPxWorkbookXLSX class; be sure to either put the class library in your
path, or to add the path to the NewObject() call. Then, call the SaveTableToWorkbookEx
method, passing the table name or alias to export and the name of the file you want to
create. The code is included as ExportXLSXWorkbookSalespersonMonthly.prg in the
downloads for this session. Partial results are shown in Figure 42.

Listing 47. Exporting a table or cursor to Excel with XLSX Workbook is simple.

LOCAL cXLSFile, oToExcel, lReturn
cXLSXFile = FORCEPATH(FORCEEXT("SalesPersonMonthly", "XLSX"), SYS(2023))

oToExcel = NEWOBJECT("VFPxWorkbookXLSX", "VFPxWorkbookXLSX.vcx")
lReturn = oToExcel.SaveTableToWorkbookEx("csrXTab", m.cXLSXFile)

IF NOT m.lReturn
 MESSAGEBOX("Unable to create workbook")
ENDIF

Figure 42. XSLX Workbook can export directly from a table or cursor to XSLX. By default, it does no
formatting.

The class has many additional methods, including the ability to save a grid to a workbook,
maintaining its formatting.

DBF2XLSX
This tool comes from Vilhelm-Ion Praisach (whose extensions to FastXtab are discussed
earlier in this paper). The code is included in the downloads for this session, and is also
linked in Praisach’s blog at http://praisachion.blogspot.com/2017/04/export-dbf-to-excel-
2007.html. They include the basic export, as well as a class to provide UI for exporting.

https://github.com/ggreen86/XLXS-Workbook-Class
https://github.com/ggreen86/XLXS-Workbook-Class
http://praisachion.blogspot.com/2017/04/export-dbf-to-excel-2007.html
http://praisachion.blogspot.com/2017/04/export-dbf-to-excel-2007.html

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 50 of 70

Praisach also provides VFP 6-compatible versions. (In addition, elsewhere in his blog,
Praisach offers a tool for importing XLSX files and tools for exporting to other Office
formats.)

Using DBF2XLSX is even easier than using XLSX Workbook. Listing 48 shows the necessary
code. A single line of code does the export; Figure 43 shows partial results. The code is
included as ExportDBF2XLSXSalespersonMonthly.prg in the downloads for this session.

Listing 48. With DBF2XLSX, one line of code exports a table or cursor to a modern Excel workbook.

LOCAL cXLSFile, oToExcel, lReturn
cXLSXFile = FORCEPATH(FORCEEXT("SalesPersonMonthly", "XLSX"), SYS(2023))

DO CopyToXLSX WITH 'csrXTab', m.cXLSXFile, .T.

Figure 43. The output from CopyToXLSX needs some formatting.

Only the first two parameters are required, providing the table or cursor to be copied and
the name of the result file. The third parameter indicates whether the first row of the result
should contain the column names. Additional parameters let you indicate which columns to
include, as well as what to do with memo fields.

The downloads don’t include documentation other than some test code, but a number of
posts on Praisach’s blog discuss how to use this routine and the others. Several posts
indicate that the class ExportXLSX has the ability to export a grid, not just a table or cursor.

Other options
There are several other projects floating around the VFP world that have the capability of
creating XLSX files.

FoxyXLS was created by Cesar Chalom, the creator of FoxCharts and FoxyPreviewer. Unlike
the tools above, it doesn’t provide a one-line way to convert, but it doesn’t take too much
code. Rick Schummer wrote about it in detail in the March, 2014 issue of FoxRockX.

Çetin Basoz’s VFP2Excel is a simple procedure that copies VFP data to Excel using ADO.
Unlike the other tools described here, it expects Excel to be present and running. One of its
parameters is a reference to the range in Excel where the data should be placed.

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 51 of 70

Creating pivot tables

All of the previous solutions simply take the generated crosstab and dump it into a
spreadsheet. But Excel has some very nice capabilities relating to crosstabs and pivots. You
can give users the ability to slice and dice the data in different ways, including filtering
based on the values provided and collapsing whole sections.

Figure 44 shows (part of) the result we’ll be working toward in this section. The whole
spreadsheet is included as PivotedSalesPersonMonthly.xlsx in the downloads for this
session.

Figure 44. Excel’s pivot tables present crosstab data in a way that lets users explore it.

About pivot tables
Excel has included pivot tables for a long time; the functionality was first introduced in
Excel 5.0, back in 1994. The Pivot Table wizard, introduced in Excel 97, made it easy to
create pivot tables.

As Figure 44 shows, pivot tables allow you to use multiple criteria for pivoting the data.
Here, the rows are based on salesperson, while the columns are based on both month and
year. When you use multiple criteria, pivot tables let you collapse and expand; Figure 45
shows the same worksheet with the 1996 data collapsed to a single column.

Figure 45. When you pivot on multiple criteria, Excel’s pivot tables let you collapse and expand on the
higher-level values. Here, the 1996 data has been collapsed to a single column.

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 52 of 70

Excel’s pivot tables also let you filter and sort, based on either row or column values.
Figure 46 shows the dropdown that appears when you click the arrow on the Salesperson
header.

Figure 46. Excel’s pivot tables let you filter and sort, based on row or column values. This window opens
when you click the dropdown arrow on the Salesperson header.

Note that you can filter on either the label or the value. That is, you can select specific
salespeople, or select only those salespeople in a certain part of the alphabet (which seems
silly), or select only those with total sales (in the Grand Total column at the very right edge
of the pivot table) in a certain range. Figure 47 shows the pivot table with all three years
collapsed and with a filter of total sales greater than or equal to $100,000. Note the icon on
the Salesperson header that lets you know you’re seeing filtered data.

Figure 47. You can filter a pivot table based on the computed data.

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 53 of 70

When there are multiple criteria, as with the columns in this example, you can choose
which criterion you’re sorting or filtering on. Figure 48 shows the dropdown that lets you
pick the field to which the rest of the dialog applies.

Figure 48. When you use multiple criteria to specify rows or columns, you can choose which to sort or filter
on.

Creating pivot tables programmatically
If you can do it interactively in Excel, you can almost always do it programmatically. While
I’ve written (for example, http://tinyurl.com/ybhfsdfc) that recording a macro can result in
bad code, when you’re first trying to automate a task and have no idea what objects are
involved, recording a macro can get you started; that’s what I did to figure out how to
create a pivot table. In fact, I’d hardly looked at Excel’s pivot tables before working on this
session, so I actually started out using Excel’s Pivot Table Wizard to figure out how to
create them at all. (It wasn’t obvious to me how to get started; on the Insert tab, choose
PivotTable and then choose PivotTable from the submenu.) Once I felt comfortable, I
recorded a macro using the Wizard, and then adapted that code in VFP.

The first step in creating a pivot table is to send the raw data to Excel. Since creating a pivot
table implies that Excel is available, I chose to simply create a CSV file with COPY TO, as in
Listing 49.

Listing 49. The first step in creating a pivot table is sending the raw data to Excel.

OPEN DATABASE HOME(2) + "Northwind\Northwind"

SELECT EmployeeID, ;
 YEAR(OrderDate) AS Year, ;
 MONTH(OrderDate) as Month, ;
 SUM(Quantity*UnitPrice) AS OrderTotal ;
 FROM Orders ;

http://tinyurl.com/ybhfsdfc

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 54 of 70

 JOIN OrderDetails ;
 ON Orders.OrderID = OrderDetails.OrderID ;
 GROUP BY 1, 2, 3 ;
 INTO CURSOR csrMonthlyTotals

* Add employee name
SELECT PADR(ALLTRIM(FirstName) + (' ' + LastName), 30) AS cName, ;
 csrMonthlyTotals.* ;
 FROM csrMonthlyTotals ;
 JOIN Employees ;
 ON csrMonthlyTotals.EmployeeID = Employees.EmployeeID ;
 ORDER BY LastName, FirstName ;
 INTO CURSOR csrReport

LOCAL cCSVFile
cCSVFile = FORCEPATH(FORCEEXT("SalesPersonMonthly", "CSV"), SYS(2023))

COPY TO (m.cCSVFile) TYPE csv

Once the data is in Excel, the simplest way to create a pivot table is to first create a
PivotCache object. A PivotCache is an object containing the data you want to put in the
pivot table. (Besides being really easy, creating a PivotCache first lets you use the same data
for multiple pivot tables.) The PivotCache object has a CreatePivotTable method that does
most of the heavy lifting. In Listing 50, the CSV file is opened in Excel, and the PivotCache
and PivotTable objects are created. Using Excel’s UsedRange object to specify the data
avoids having to know exactly which rows and columns are in the exported data.

Listing 50. Creating the pivot table object is straightforward, using a PivotCache.

LOCAL oExcel AS Excel.Application, ;
 oWorkbook as Excel.Workbook, ;
 oSheet AS Excel.Worksheet, ;
 oPC AS Excel.PivotCache, ;
 oPT AS Excel.PivotTable, ;
 oRange AS Excel.Range

oExcel = CREATEOBJECT("Excel.Application")
oWorkbook = oExcel.Workbooks.Open(m.cCSVFile)
oExcel.Visible = .T.

* Adapted from PivotTable macro
oRange = oExcel.ActiveSheet.UsedRange()
oSheet = oExcel.Sheets.Add()
oSheet.Name = "SalesPivot"
oPC = oExcel.ActiveWorkbook.PivotCaches. Create(1, m.oRange, 4)
 && First param: 1=xlDatabase
 && Third param: 5=xlPivotTable15; 4=xlPivotTable14

oPT = oPC.CreatePivotTable("SalesPivot!R3C1", "PivotTable2", .T., 4)

The PivotTable object created is empty. If you look at the workbook at this point, the
worksheet exists, but there’s no data there. Instead you see a prompt from Excel, as in

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 55 of 70

Figure 49. If you click in that area, the Pivot Table Wizard pane appears so you can specify
the layout of the pivot table.

Figure 49. After creating a pivot table, Excel prompts you to populate it.

 Of course, we don’t want to work with the wizard; we want to do this programmatically. To
do that, add one or more data fields using PivotTable’s AddDataField method. The method
accepts three parameters: the field to add, a caption for it, and a function to apply to the
field. Only the first parameter is required.

The secret to providing the pivot field is PivotTable’s PivotFields collection, which contains
all the fields put into the PivotCache; they’re (initially) named by the column headers in the
original data. In our example, there are five: cname, employeeid, year, month, and
ordertotal. The only field there that we want to treat as data is ordertotal, so that’s the one
we specify in the AddDataField method.

The caption parameter specifies the string that will appear in the upper-left corner of the
pivot table. In our example, we want “Orders ($).” Omitting this parameter uses the field
name as the caption. (Be aware that once you change the caption for a field, that becomes
the name you use to refer to that field in the PivotFields collection.)

The function parameter is based on the xlConsolidationFunction enumeration; the most
common values are shown in Table 4. Other available functions include variance and
standard deviation, as well as some variations on count. If you omit this parameter, you get
a sum.

Table 4. You can specify what aggregation function to use on a data field.

Function Excel
constant

Value

Average xlAverage -4106
Count xlCount -4112
Maximum xlMax -4136

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 56 of 70

Minimum xlMin -4139
Sum xlSum -4157

Listing 51 shows the code to add ordertotal as a data field to the pivot table.

Listing 51. It takes only one line of code to set up a data field in the pivot table.

oPT.AddDataField(oPT.PivotFields("ordertotal"), "Orders ($)", -4157) && xlSum

The other thing we need to do is specify which fields are columns and which are rows. The
easiest way to do this is set the relevant properties for each field individually. The two key
properties are Orientation and Position. Orientation determines whether the field is used
for rows (1 = xlRowField) or for columns (2 = xlColumnField). Position determines the
priority of the row or column when multiple rows or columns are specified. Listing 52
shows the settings for our example, making cname a row field, and year and month column
fields, with year coming first.

Listing 52. Set the orientation and position properties of the items in the PivotFields collection to specify the
rows and columns you want to show in the pivot table.

With oPT.PivotFields("cname")
 .Orientation = 1 && xlRowField
 .Position = 1
EndWith
With oPT.PivotFields("year")
 .Orientation = 2 && xlColumnField
 .Position = 1
ENDWITH
With oPT.PivotFields("month")
 .Orientation = 2 && xlColumnField
 .Position = 2
EndWith

At this point, you have a pivot table showing the relevant data. The final steps are cosmetic:
setting the row and column descriptions and formatting the data properly.

The CompactLayoutRowHeader and CompactLayoutColumnHeader properties of the pivot
table specify the headers for the rows and columns, respectively. These are also the items
that contain the dropdowns for sorting and filtering.

Formatting all the data cells in a pivot table is surprisingly simple; just set the
NumberFormat property of the relevant member of the PivotFields collection. The code in
Listing 53 sets the headers and formats the data cells.

Listing 53. Formatting a pivot table takes just a few lines of code.

oPT.CompactLayoutRowHeader = "Salesperson"
oPT.CompactLayoutColumnHeader = "Months/Years"
oPT.PivotFields("Orders ($)").NumberFormat = "$#,#0"

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 57 of 70

The complete code to create the pivot table shown in Figure 44 is included in the
downloads for this session as PivotExcelSalespersonMonthly.prg.

You can do lots more with pivot tables, including specifying multiple pivot fields, and
including a third dimension (pages). You’ll find documentation for the PivotTable object at
http://tinyurl.com/y8dzgcft.

Charting crosstabs

While reports and spreadsheets are useful, especially for those who like number crunching,
for many users, graphs and charts are far more informative. There are two straightforward
ways to chart this data. Excel has strong graphing capabilities and includes a tool for
building what it calls “Pivot Charts.” If you need graphs inside your VFP application, VFPX’s
FoxCharts gives you what you need.

We’ll look at sales by category, including tracking by country. Listing 54 shows the query
that collects the raw data, plus a couple of additional columns. Figure 50 shows partial
results.

Listing 54. This query collects information about sales by product, category, year and country.

SELECT ProductName, ;
 CategoryName, ;
 YEAR(OrderDate) AS Year, ;
 ShipCountry, ;
 SUM(Quantity) AS NumSold ;
 FROM Orders ;
 JOIN OrderDetails OD ;
 ON Orders.OrderID = OD.OrderID ;
 JOIN Products ;
 ON OD.ProductID = Products.ProductID ;
 JOIN Categories ;
 ON Products.CategoryID = ;
 Categories.CategoryID ;
 GROUP BY 1, 2, 3, 4 ;
 INTO CURSOR csrProductsSold

http://tinyurl.com/y8dzgcft

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 58 of 70

Figure 50. The query in Listing 54 collects data for sales of each product by year and country, and includes
the product’s category.

Creating Excel’s Pivot Charts

The Pivot Table item on Excel’s Insert tab includes a choice of Pivot Table or Pivot Chart.
Choosing Pivot Chart lets you specify a data range and then opens the Pivot Table Wizard
with an added element for the chart itself. As you work through the wizard, you create both
a pivot table and a graphical representation of the data. For example, Figure 51 shows a
graph of sales by category and country; you can see part of the pivot table behind the
graph.

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 59 of 70

Figure 51. As you create an Excel pivot graph using the wizard, a pivot table is created as well.

You create a pivot graph programmatically by creating a pivot table and then adding a
chart. The AddChart method of the Shapes collection adds a chart to the worksheet. It
accepts five parameters. The first is the chart type (from the xlChartType enumeration).
The other four are for positioning the chart: left, top, width, height. Excel is smart enough to
make the chart based on the pivot table you just created without your having to do
anything special.

The code in Listing 55 creates the pivot table and chart. The complete code (including the
query) is included in the downloads for this session as PivotProductSales.prg. As with the
previous examples, the data is exported to a CSV file and then opened in Excel. Then, a
PivotCache is created containing all the data, and used to create a PivotTable. Finally,
AddChart is called. Chart type 51, which is the default when you work interactively, creates
a vertical bar chart (which Excel calls a “column chart”) with a separate bar for each data
point.

Listing 55. This code creates the pivot table and pivot graph shown in Figure 51.

LOCAL cCSVFile
cCSVFile = FORCEPATH(FORCEEXT("ProductSales", "CSV"), SYS(2023))

COPY TO (m.cCSVFile) TYPE csv

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 60 of 70

LOCAL oExcel AS Excel.Application, ;
 oWorkbook as Excel.Workbook, ;
 oSheet AS Excel.Worksheet
LOCAL oPC AS Excel.PivotCache, ;
 oPT AS Excel.PivotTable
LOCAL oChart AS Excel.Chart, ;
 oRange AS Excel.Range

oExcel = CREATEOBJECT("Excel.Application")
oWorkbook = oExcel.Workbooks.Open(m.cCSVFile)
oExcel.Visible = .T.

oSheet = oExcel.Sheets.Add()
oSheet.Name = "SalesByCategoryAndCountry"

oRange = oExcel.ActiveWorkbook.Worksheets("ProductSales").UsedRange()
oPC = oExcel.ActiveWorkbook.PivotCaches.Create(1, m.oRange, 4) && 1 = xlDatabase
oPT = oPC.CreatePivotTable("SalesByCategoryAndCountry!R1C1", "PivotTable1", .T., 4)
oPT.AddDataField(oPT.PivotFields("numsold"), "Units", -4157) && xlSum
WITH oPT.PivotFields("categoryname") AS Excel.PivotField
 .Orientation = 1 && xlRowField
 .Position = 1
 .Caption = "Category"
ENDWITH
WITH oPT.PivotFields("shipcountry") ;
 AS Excel.PivotField
 .Orientation = 2 && xlColumnField
 .Position = 1
 .Caption = "Country"
ENDWITH

oChart = oSheet.Shapes.AddChart(51, 150, 50, 600, 300) && 51 = xlColumnClustered

RETURN

As Figure 51 shows, pivot charts offer the same sorting and filtering options as pivot
tables. The Category and Country dropdowns let you sort the bars and let you filter some
out based on either their labels or their values. As described in the previous section of this
paper, value filters work only on the grand total, not the values in the individual columns.

To add a filter, call the Add method of the PivotFilters collection for the row or column you
want to filter on. For example, adding the line in Listing 56 to the end of the previous
example produces the result in Figure 52Error! Reference source not found.. The first
parameter indicates the type of filter, based on the xlPivotFilterType collection; 1 is a top
count. (The collection is documented at http://tinyurl.com/ycwr2mtj.) The second
parameter specifies the field to apply the filter to; here, it’s the number of units sold. The
third parameter is the value for the filter; here, we’re asking for the top five. The result is
the top five countries by total units sold. (The method has additional parameters not
relevant in this case. The one you’re most likely to use is a second value parameter, for
cases where you’re filtering for information between two values.) A version of the code
setting this filter is included in the downloads for this session as
PivotProductSalesFiltered.prg.

http://tinyurl.com/ycwr2mtj

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 61 of 70

Listing 56. You can filter the data in the pivot table and pivot chart using the PivotFilters collection.

oPT.PivotFields("Country").PivotFilters.Add(1, oPT.PivotFields("units"), 5)

Figure 52. We can reduce the amount of data in the chart by filtering.

If you instead add a filter to choose the top three by category, as in Listing 57, you get a
very different result, shown in Figure 53. (Complete code for this example is included in
the downloads for this session as PivotProductSalesFiltered2.prg.)

Listing 57. This line filters for the top three categories by total sales.

oPT.PivotFields("Category").PivotFilters.Add(1, oPT.PivotFields("units"), 3)

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 62 of 70

Figure 53. You can filter to show only the top-selling categories.

You can add multiple filters, resulting in reducing the data shown even more. It’s also
worth noting that this programmatic approach to filtering applies to pivot tables whether
you chart them or not.

Creating other types of charts
Of course, you can create other types of charts and graphs. Interactively, you right-click on
the chart and choose Change Chart Type. Programmatically, you simply pass a different
value for the first parameter of the AddChart method.

Excel offers many types of charts. In Figure 54, some of the xlChartType enumeration is
shown in the VFP Object Browser. The enumeration is documented at
http://tinyurl.com/ydxz3vb3.

http://tinyurl.com/ydxz3vb3

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 63 of 70

Figure 54. VFP’s Object Browser lets you explore Excel’s enumerations. Here, part of the list for xlChartType
is shown.

The code in Listing 58 builds a pie chart showing each category’s share of sales. (It
assumes the data has already been collected, exported from VFP and imported into Excel.
The complete program is included as ProductSalesByCategoryPie.prg in the downloads for
this session.) Figure 55 shows the result.

Listing 58. The first parameter of the AddChart method determines the type of chart.

oSheet = oExcel.Sheets.Add()
oSheet.Name = "SalesByCategoryAndCountry"

oRange = oExcel.ActiveWorkbook.Worksheets("ProductSales").UsedRange()
oPC = oExcel.ActiveWorkbook.PivotCaches.Create(1, m.oRange, 4)
oPT = oPC.CreatePivotTable("SalesByCategoryAndCountry!R1C1", "PivotTable1", .T., 4)
oPT.AddDataField(oPT.PivotFields("numsold"), "Units", -4157) && xlSum
WITH oPT.PivotFields("categoryname") AS Excel.PivotField
 .Orientation = 1 && xlRowField
 .Position = 1
 .Caption = "Category"
ENDWITH

oChart = oSheet.Shapes.AddChart(70, 150, 50, 600, 300) && 70 = xl3DPieExploded

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 64 of 70

Figure 55. This chart shows the share of sales for each category.

With dozens of chart types, you should be able to find one that helps your users understand
their data.

Producing graphs and charts in VFP with FoxCharts

FoxCharts is one of the premiere tools available from VFPX, the community open source
project for VFP. It uses GDIPlusX to provide a fairly easy way to put graphs and charts into
VFP forms.

You can install FoxCharts through Thor or directly from VFPX’s new home on GitHub. The
direct link is https://github.com/VFPX/FoxCharts.

The download site includes a 43-page paper from Jim Nelson. In addition, Doug Hennig has
a great paper on his website that shows you how to get started and gives you an idea as to
its capabilities: (http://doughennig.com/papers/Pub/FoxCharts.pdf). So I won’t go into
detail on getting started. Instead, I’ll focus on the kinds of charts you’re likely to want to
create from crosstab data.

In general, to use FoxCharts, you drop the FoxCharts class on a form and set properties and
add code. (FoxCharts also comes with a tool that lets you create charts interactively. You
may find that easier.) To make it easy for you to replicate my examples, I’m doing most of
the work in code rather than setting properties of the chart and the form in the Property
Sheet.

However, I created a form class that includes the FoxCharts object and names it cntChart.
The form also has a custom method called MakeChart and a call to that method in the
form’s Init method, as in Listing 59. The library containing the form class is included in the
downloads for this session as GranT060.VCX; if you use it, you’ll need to point to the
location where you’ve installed FoxCharts.

Listing 59. To encapsulate all the code that populates the chart, the form’s Init method calls a custom
MakeChart method.

This.MakeChart()

https://github.com/VFPX/FoxCharts
http://doughennig.com/papers/Pub/FoxCharts.pdf

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 65 of 70

Creating a pie chart
We’ll start by replicating the pie chart from Figure 55 (though technically, it doesn’t use a
crosstab). The first step is collecting the necessary data. FoxCharts is a little finicky about
its data and it’s best if the cursor you supply contains only data you want to graph, so this
form’s MakeChart method starts with the query in Listing 60.

Listing 60. This query collects the data needed to create a pie chart of units sold by category.

SELECT CategoryName, ;
 SUM(Quantity) AS NumSold ;
 FROM Orders ;
 JOIN OrderDetails OD ;
 ON Orders.OrderID = OD.OrderID ;
 JOIN Products ;
 ON OD.ProductID = Products.ProductID ;
 JOIN Categories ;
 ON Products.CategoryID = Categories.CategoryID ;
 GROUP BY 1 ;
 INTO CURSOR csrProductsSold

FoxCharts lets you specify which slices should be exploded individually by providing a
column in the underlying cursor. (There are other options for exploding pie charts, as well.
You can indicate that a slice explodes when you click on it, or when you click on its legend,
rather than specifying a fixed list.) So, the next step is to add that column to the cursor, as in
Listing 61.

Listing 61. The added lDetach column lets us specify which slices of the pie should be “exploded,” that is,
pulled outward from the chart. Here, all columns should be exploded.

SELECT *, .T. AS lDetach ;
 FROM csrProductsSold ;
 INTO CURSOR csrProductsSold

Once we have data, we set properties of the cntChart object (as well as setting the form’s
Caption). Listing 62 shows the code.

Listing 62. This code tells the FoxCharts object what type of chart to draw, what data to use, and more.

ThisForm.Caption = "Units sold by category"

WITH This.cntChart
 .Anchor = 15
 .ChartType = 1 && Pie
 .ColorType = 0

 .SourceAlias = "csrProductsSold"

 .ChartsCount = 1
 .Fields(1).FieldValue = "NumSold"
 .FieldLegend = "CategoryName"

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 66 of 70

 .Title.Caption = 'Units Sold'
 .Subtitle.Caption = ''
 .XAxis.Caption = 'Category'
 .YAxis.Caption = 'Units sold'

 .FieldDetachSlice = "lDetach"

 .DrawChart()

ENDWITH

After setting the form caption, we anchor the FoxCharts object to the form, so that resizing
the form resizes the chart.

Next, we indicate that we want a pie chart (ChartType = 1) and that we should use the basic
color set (ColorType = 0).

The SourceAlias property tells the chart where its data comes from, though it doesn’t
specify which data from the cursor to graph.

The ChartsCount property sounds like it specifies how many charts you’re creating, but it
actually indicates how many data series are to be specified. The value you provide is used
to set the size of the Fields collection. So, after indicating we have only one data series
(which is normal for a pie chart), we indicate the data for that series (the NumSold field of
the cursor) by setting the FieldValue property of Fields(1), the first element in the Fields
collection. The FieldLegend property specifies the field in the data source that provides the
values to appear in the legend for the chart; here, it’s the CategoryName column

Next, we specify a title for the chart. As you can see, you can have both a title and a subtitle;
a subtitle seemed like overkill for this simple example.

FieldDetachSlice applies to pie charts and indicates the field in the data source that
specifies whether a given slice should be exploded, so we specify the lDetach column.

Finally, we call the DrawChart method to actually create the chart. The complete code for
this example is included in the downloads for this session as CategorySalesPie.SCX. The
resulting form is shown in Figure 56.

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 67 of 70

Figure 56. It takes only a little code to build this pie chart with FoxCharts.

Working with multiple data series
To graph crosstab results, we need to work with multiple data series. Each column created
by a crosstab becomes a data series. The goal is to create a chart similar to Figure 51; the
result is shown in Figure 57.

Figure 57. This is the FoxCharts version of the bar chart showing sales by country for each category.

As in the previous example, first we need to collect the data. For this chart, we start with
the query in Listing 54, and then crosstab it. Listing 63 shows the code that creates the
crosstab cursor from the original query results. Figure 58 shows partial results.

Listing 63. To create a chart showing units sold by category and country, we need to crosstab the data.

LOCAL oXTab AS FastXTab OF "fastxtab16\fastxtab.prg"

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 68 of 70

oXTab = NEWOBJECT("fastxtab", "fastxtab16\fastxtab.prg")
WITH oXTab AS FastXTab OF "fastxtab16\fastxtab.prg"
 .cOutFile = "csrXtab"
 .cRowFIELD = "CategoryName"
 .cColField = "ShipCountry"
 .cDATAFIELD = "NumSold"
 .lCursorOnly = .T.
 .lCLOSETABLE = .T.
 .RunXtab()
ENDWITH

Figure 58. This is part of the data to be graphed. There’s one column for each country.

Once we have the data, as before, we set properties of the FoxCharts object. In this case, we
want to set ChartCount to the number of data columns (that is, the number of countries) in
the cursor. Once we do that, we need to provide information about each column. Listing 64
shows the code to specify the chart; the complete program for this chart is included in the
downloads for this session as CategorySalesByCountry.SCX.

Listing 64. To create the chart in Figure 57, we need to set up a data series for each country.

LOCAL nCountries
nCountries = FCOUNT("csrXTab") - 1

This.Caption = "Category Sales by Country"

WITH This.cntChart
 .Anchor = 15
 .ChartType = 8 && MultiBar
 .ColorType = 0

 .SourceAlias = "csrXTab"
 .FieldAxis2 = "CategoryName"
 .AxisLegend2.Rotation = -45
 .AxisLegend2.Alignment = 1 && Right

 .ChartsCount = m.nCountries

 LOCAL nSeries, nFirstDataCol
 nFirstDataCol = 2

 FOR nSeries = 1 TO m.nCountries
 WITH .Fields(m.nSeries)

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 69 of 70

 .FieldValue = FIELD(m.nSeries + m.nFirstDataCol -1)
 .Legend = .FieldValue
 ENDWITH
 ENDFOR

 .Title.Caption = 'Units Sold'
 .Subtitle.Caption = ;
 'By Category and Country'
 .XAxis.Caption = 'Category'
 .YAxis.Caption = 'Units sold'

 .DrawChart()

ENDWITH

To create a bar chart with multiple data series, we set ChartType to 8. Bar charts have
legends on their axes, as well as an optional block legend (like the one for the pie chart).
For this chart, the Y-axis should have numeric values representing the data; we don’t have
to specify anything for that to happen. But the X-axis should be labelled with the category
names; that’s what we get by setting the FieldAxis2 property. The two lines after that angle
the labels and right-justify them, so they don’t overlap.

The key part of the code is the loop, which sets properties of the members of the Fields
collection, based on the data columns in the crosstab. Setting the Legend property of the
fields specifies that there should be a block legend (which, in this case, shows the colors for
the countries).

Lots more options
Charts created with FoxCharts don’t offer the ability for live filtering that Excel does, but by
default, they include tooltips that show the value of a given item when the mouse hovers
over it, as in Figure 59. (Set the FoxCharts object’s ShowTips property to .F. to turn these
off.) Some chart types have other dynamic options, as well.

Turning Data Sideways: Crosstabs and Pivot Tables

Copyright 2017, Tamar E. Granor Page 70 of 70

Figure 59. By default, FoxCharts shows tooltips with data values.

FoxCharts offers many more chart types, as well as control over colors and much more.

In addition, though we’ve looked at putting charts on forms, they can also be printed. See
the documentation on GitHub for details.

Wrapping up
Crosstabs and pivots are a valuable way to present data. Both VFP and SQL Server make it
fairly easy to convert normalized data into crosstabs and pivots. Once you’ve converted the
data, there are lots of options for presenting it to users through reports, spreadsheets and
charts.

All the tools described in this paper, whether for creating crosstabs or reporting on them,
have many more options than are covered here. If the examples here don’t give you exactly
what you need, it’s worth spending some time to figure out whether the tools can do so.

	Introduction
	Creating crosstabs in VFP
	VFPXTab
	FastXTab
	FastTab 1.6
	Which one to use?

	Generating crosstabs (pivots) in SQL
	Introducing PIVOT
	Getting meaningful column names
	Determining rows by multiple columns
	Aggregating on more than one column
	Handling unknown data
	Undoing PIVOT
	Using UNPIVOT to normalize data
	Normalizing multiple columns
	Unpivoting unknown columns

	Reporting on crosstab and pivot data
	The Problem with Reports
	FIELD() and EVAL() to the rescue
	How many fields?
	Making the report generic
	Handling more complicated data

	Sending crosstabs to Excel
	Sending cross-tabbed data to Excel
	Creating XLSX files
	XLSX Workbook
	DBF2XLSX
	Other options

	Creating pivot tables
	About pivot tables
	Creating pivot tables programmatically

	Charting crosstabs
	Creating Excel’s Pivot Charts
	Creating other types of charts

	Producing graphs and charts in VFP with FoxCharts
	Creating a pie chart
	Working with multiple data series
	Lots more options

	Wrapping up

